自适应技术及其应用

João Paulo da Silva Neto
{"title":"自适应技术及其应用","authors":"João Paulo da Silva Neto","doi":"10.4018/978-1-59904-849-9.CH006","DOIUrl":null,"url":null,"abstract":"Before the advent of software engineering, the lack of memory space in computers and the absence of established programming methodologies led early programmers to use self-modification as a regular coding strategy. Although unavoidable and valuable for that class of software, solutions using self-modification proved inadequate while programs grew in size and complexity, and security and reliability became major requirements. Software engineering, in the 70’s, almost led to the vanishing of self-modifying software, whose occurrence was afterwards limited to small low-level machinelanguage programs with very special requirements. Nevertheless, recent research developed in this area, and the modern needs for powerful and effective ways to represent and handle complex phenomena in hightechnology computers are leading self-modification to be considered again as an implementation choice in several situations. Artificial intelligence strongly contributed for this scenario by developing and applying non-conventional approaches, e.g. heuristics, knowledge representation and handling, inference methods, evolving software/ hardware, genetic algorithms, neural networks, fuzzy systems, expert systems, machine learning, etc. In this publication, another alternative is proposed for developing Artificial Intelligence applications: the use of adaptive devices, a special class of abstractions whose practical application in the solution of current problems is called Adaptive Technology. The behavior of adaptive devices is defined by a dynamic set of rules. In this case, knowledge may be represented, stored and handled within that set of rules by adding and removing rules that represent the addition or elimination of the information they represent. Because of the explicit way adopted for representing and acquiring knowledge, adaptivity provides a very simple abstraction for the implementation of artificial learning mechanisms: knowledge may be comfortably gathered by inserting and removing rules, and handled by tracking the evolution of the set of rules and by interpreting the collected information as the representation of the knowledge encoded in the rule set.","PeriodicalId":320314,"journal":{"name":"Encyclopedia of Artificial Intelligence","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptive Technology and Its Applications\",\"authors\":\"João Paulo da Silva Neto\",\"doi\":\"10.4018/978-1-59904-849-9.CH006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Before the advent of software engineering, the lack of memory space in computers and the absence of established programming methodologies led early programmers to use self-modification as a regular coding strategy. Although unavoidable and valuable for that class of software, solutions using self-modification proved inadequate while programs grew in size and complexity, and security and reliability became major requirements. Software engineering, in the 70’s, almost led to the vanishing of self-modifying software, whose occurrence was afterwards limited to small low-level machinelanguage programs with very special requirements. Nevertheless, recent research developed in this area, and the modern needs for powerful and effective ways to represent and handle complex phenomena in hightechnology computers are leading self-modification to be considered again as an implementation choice in several situations. Artificial intelligence strongly contributed for this scenario by developing and applying non-conventional approaches, e.g. heuristics, knowledge representation and handling, inference methods, evolving software/ hardware, genetic algorithms, neural networks, fuzzy systems, expert systems, machine learning, etc. In this publication, another alternative is proposed for developing Artificial Intelligence applications: the use of adaptive devices, a special class of abstractions whose practical application in the solution of current problems is called Adaptive Technology. The behavior of adaptive devices is defined by a dynamic set of rules. In this case, knowledge may be represented, stored and handled within that set of rules by adding and removing rules that represent the addition or elimination of the information they represent. Because of the explicit way adopted for representing and acquiring knowledge, adaptivity provides a very simple abstraction for the implementation of artificial learning mechanisms: knowledge may be comfortably gathered by inserting and removing rules, and handled by tracking the evolution of the set of rules and by interpreting the collected information as the representation of the knowledge encoded in the rule set.\",\"PeriodicalId\":320314,\"journal\":{\"name\":\"Encyclopedia of Artificial Intelligence\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Encyclopedia of Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-59904-849-9.CH006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Encyclopedia of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-59904-849-9.CH006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在软件工程出现之前,由于计算机内存空间的不足和缺乏成熟的编程方法,导致早期的程序员将自我修改作为常规的编码策略。尽管对于这类软件来说,使用自我修改的解决方案是不可避免的,也是有价值的,但当程序的规模和复杂性不断增长,安全性和可靠性成为主要需求时,使用自我修改的解决方案被证明是不够的。软件工程,在70年代,几乎导致了自我修改软件的消失,它的出现后来仅限于具有非常特殊要求的小型低级机器语言程序。然而,最近在这一领域的研究有所发展,现代需要强大而有效的方法来表示和处理高科技计算机中的复杂现象,这使得自我修改在一些情况下再次被视为一种实现选择。人工智能通过开发和应用非常规方法,如启发式、知识表示和处理、推理方法、进化的软件/硬件、遗传算法、神经网络、模糊系统、专家系统、机器学习等,为这一场景做出了巨大贡献。在本出版物中,提出了开发人工智能应用的另一种选择:使用自适应设备,这是一类特殊的抽象,其在解决当前问题中的实际应用称为自适应技术。自适应设备的行为由一组动态规则定义。在这种情况下,可以通过添加和删除表示它们所表示的信息的添加或删除的规则来表示、存储和处理该规则集中的知识。由于采用了明确的方式来表示和获取知识,自适应为人工学习机制的实现提供了一个非常简单的抽象:可以通过插入和删除规则来轻松地收集知识,并通过跟踪规则集的演变和通过将收集到的信息解释为编码在规则集中的知识的表示来处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Technology and Its Applications
Before the advent of software engineering, the lack of memory space in computers and the absence of established programming methodologies led early programmers to use self-modification as a regular coding strategy. Although unavoidable and valuable for that class of software, solutions using self-modification proved inadequate while programs grew in size and complexity, and security and reliability became major requirements. Software engineering, in the 70’s, almost led to the vanishing of self-modifying software, whose occurrence was afterwards limited to small low-level machinelanguage programs with very special requirements. Nevertheless, recent research developed in this area, and the modern needs for powerful and effective ways to represent and handle complex phenomena in hightechnology computers are leading self-modification to be considered again as an implementation choice in several situations. Artificial intelligence strongly contributed for this scenario by developing and applying non-conventional approaches, e.g. heuristics, knowledge representation and handling, inference methods, evolving software/ hardware, genetic algorithms, neural networks, fuzzy systems, expert systems, machine learning, etc. In this publication, another alternative is proposed for developing Artificial Intelligence applications: the use of adaptive devices, a special class of abstractions whose practical application in the solution of current problems is called Adaptive Technology. The behavior of adaptive devices is defined by a dynamic set of rules. In this case, knowledge may be represented, stored and handled within that set of rules by adding and removing rules that represent the addition or elimination of the information they represent. Because of the explicit way adopted for representing and acquiring knowledge, adaptivity provides a very simple abstraction for the implementation of artificial learning mechanisms: knowledge may be comfortably gathered by inserting and removing rules, and handled by tracking the evolution of the set of rules and by interpreting the collected information as the representation of the knowledge encoded in the rule set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信