木星深层大气中高度枯竭的碱金属

Ananyo Bhattacharya, Cheng Li, S. Atreya, P. Steffes, S. Levin, S. Bolton, T. Guillot, P. Gupta, A. Ingersoll, J. Lunine, G. Orton, F. Oyafuso, J. Waite, A. Bellotti, M. Wong
{"title":"木星深层大气中高度枯竭的碱金属","authors":"Ananyo Bhattacharya, Cheng Li, S. Atreya, P. Steffes, S. Levin, S. Bolton, T. Guillot, P. Gupta, A. Ingersoll, J. Lunine, G. Orton, F. Oyafuso, J. Waite, A. Bellotti, M. Wong","doi":"10.3847/2041-8213/ace115","DOIUrl":null,"url":null,"abstract":"Water and ammonia vapors are known to be the major sources of spectral absorption at pressure levels observed by the microwave radiometer (MWR) on Juno. However, the brightness temperatures and limb darkening observed by the MWR at its longest-wavelength channel of 50 cm (600 MHz) in the first nine perijove passes indicate the existence of an additional source of opacity in the deep atmosphere of Jupiter (pressures beyond 100 bar). The absorption properties of ammonia and water vapor, and their relative abundances in Jupiter’s atmosphere, do not provide sufficient opacity in the deep atmosphere to explain the 600 MHz channel observation. Here we show that free electrons due to the ionization of alkali metals, i.e., sodium and potassium, with subsolar metallicity, [M/H] (log-based 10 relative concentration to solar) in the range of [M/H] = −2 to [M/H] = −5, can provide the missing source of opacity in the deep atmosphere. If the alkali metals are not the source of additional opacity in the MWR data, then their metallicity at 1000 bars can only be even lower. This upper bound of −2 on the metallicity of the alkali metals contrasts with the other heavy elements—C, N, S, Ar, Kr, and Xe—that are all enriched relative to their solar abundances, having a metallicity of approximately +0.5.","PeriodicalId":179976,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Depleted Alkali Metals in Jupiter’s Deep Atmosphere\",\"authors\":\"Ananyo Bhattacharya, Cheng Li, S. Atreya, P. Steffes, S. Levin, S. Bolton, T. Guillot, P. Gupta, A. Ingersoll, J. Lunine, G. Orton, F. Oyafuso, J. Waite, A. Bellotti, M. Wong\",\"doi\":\"10.3847/2041-8213/ace115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water and ammonia vapors are known to be the major sources of spectral absorption at pressure levels observed by the microwave radiometer (MWR) on Juno. However, the brightness temperatures and limb darkening observed by the MWR at its longest-wavelength channel of 50 cm (600 MHz) in the first nine perijove passes indicate the existence of an additional source of opacity in the deep atmosphere of Jupiter (pressures beyond 100 bar). The absorption properties of ammonia and water vapor, and their relative abundances in Jupiter’s atmosphere, do not provide sufficient opacity in the deep atmosphere to explain the 600 MHz channel observation. Here we show that free electrons due to the ionization of alkali metals, i.e., sodium and potassium, with subsolar metallicity, [M/H] (log-based 10 relative concentration to solar) in the range of [M/H] = −2 to [M/H] = −5, can provide the missing source of opacity in the deep atmosphere. If the alkali metals are not the source of additional opacity in the MWR data, then their metallicity at 1000 bars can only be even lower. This upper bound of −2 on the metallicity of the alkali metals contrasts with the other heavy elements—C, N, S, Ar, Kr, and Xe—that are all enriched relative to their solar abundances, having a metallicity of approximately +0.5.\",\"PeriodicalId\":179976,\"journal\":{\"name\":\"The Astrophysical Journal Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/ace115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ace115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在朱诺号上的微波辐射计(MWR)观测到的压力水平下,水和氨蒸汽是光谱吸收的主要来源。然而,MWR在其50厘米(600兆赫)的最长波长通道上观测到的前9次近木星的亮度温度和边缘变暗表明,在木星的深层大气中存在额外的不透明源(压力超过100巴)。氨和水蒸气的吸收特性,以及它们在木星大气中的相对丰度,并没有在深层大气中提供足够的不透明度来解释600 MHz频道的观测结果。本文表明,由于碱金属(即钠和钾)电离而产生的自由电子,具有亚太阳金属丰度[M/H](基于对数的10相对于太阳的浓度)在[M/H] =−2至[M/H] =−5的范围内,可以提供深层大气中缺失的不透明源。如果碱金属不是MWR数据中额外不透明的来源,那么它们在1000巴时的金属丰度只能更低。碱金属金属丰度的- 2上限与其他重元素(c、N、S、Ar、Kr和xe)形成对比,这些元素的金属丰度都相对于它们的太阳丰度而富集,其金属丰度约为+0.5。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly Depleted Alkali Metals in Jupiter’s Deep Atmosphere
Water and ammonia vapors are known to be the major sources of spectral absorption at pressure levels observed by the microwave radiometer (MWR) on Juno. However, the brightness temperatures and limb darkening observed by the MWR at its longest-wavelength channel of 50 cm (600 MHz) in the first nine perijove passes indicate the existence of an additional source of opacity in the deep atmosphere of Jupiter (pressures beyond 100 bar). The absorption properties of ammonia and water vapor, and their relative abundances in Jupiter’s atmosphere, do not provide sufficient opacity in the deep atmosphere to explain the 600 MHz channel observation. Here we show that free electrons due to the ionization of alkali metals, i.e., sodium and potassium, with subsolar metallicity, [M/H] (log-based 10 relative concentration to solar) in the range of [M/H] = −2 to [M/H] = −5, can provide the missing source of opacity in the deep atmosphere. If the alkali metals are not the source of additional opacity in the MWR data, then their metallicity at 1000 bars can only be even lower. This upper bound of −2 on the metallicity of the alkali metals contrasts with the other heavy elements—C, N, S, Ar, Kr, and Xe—that are all enriched relative to their solar abundances, having a metallicity of approximately +0.5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信