比较移动平均过程的雷氏散度

Fernando Merchan, É. Grivel, R. Diversi
{"title":"比较移动平均过程的雷氏散度","authors":"Fernando Merchan, É. Grivel, R. Diversi","doi":"10.1109/SSP.2018.8450711","DOIUrl":null,"url":null,"abstract":"Comparing processes or models is of interest in various applications. Among the existing approaches, one of the most popular methods is to use the Kullback-Leibler (KL) divergence which is related to Shannon’s entropy. Similarly, the Rényi divergence of order α can be deduced from the Rényi entropy. When α tends to 1, it leads to the KL divergence. In this paper, our purpose is to derive the expression of the Rényi divergence between the probability density functions of k consecutive samples of two real first-order moving average (MA) processes by using the eigen-decompositions of their Toeplitz correlation matrices. The resulting expression is compared with the expressions of the Rao distance and the Jeffrey’s divergence (JD) based on the eigenvalues. The way these quantities evolve when k increases is then presented. When dealing with unit-zero MA processes, the derivate is infinite for the JD and finite for the others. The influence of α is also studied.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Rényi Divergence to Compare Moving-Average Processes\",\"authors\":\"Fernando Merchan, É. Grivel, R. Diversi\",\"doi\":\"10.1109/SSP.2018.8450711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Comparing processes or models is of interest in various applications. Among the existing approaches, one of the most popular methods is to use the Kullback-Leibler (KL) divergence which is related to Shannon’s entropy. Similarly, the Rényi divergence of order α can be deduced from the Rényi entropy. When α tends to 1, it leads to the KL divergence. In this paper, our purpose is to derive the expression of the Rényi divergence between the probability density functions of k consecutive samples of two real first-order moving average (MA) processes by using the eigen-decompositions of their Toeplitz correlation matrices. The resulting expression is compared with the expressions of the Rao distance and the Jeffrey’s divergence (JD) based on the eigenvalues. The way these quantities evolve when k increases is then presented. When dealing with unit-zero MA processes, the derivate is infinite for the JD and finite for the others. The influence of α is also studied.\",\"PeriodicalId\":330528,\"journal\":{\"name\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2018.8450711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在各种应用中比较过程或模型是很有趣的。在现有的方法中,最常用的方法之一是利用与香农熵相关的Kullback-Leibler (KL)散度。同样,α阶的rsamnyi散度可以由rsamnyi熵推导出来。当α趋近于1时,导致KL散度。本文的目的是利用Toeplitz相关矩阵的特征分解,推导两个真实一阶移动平均(MA)过程的k个连续样本的概率密度函数之间的r nyi散度表达式。将所得表达式与基于特征值的Rao距离和Jeffrey散度(JD)表达式进行了比较。然后给出了这些量随k增加而变化的方式。当处理单位零MA过程时,JD的导数是无限的,其他的是有限的。研究了α的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rényi Divergence to Compare Moving-Average Processes
Comparing processes or models is of interest in various applications. Among the existing approaches, one of the most popular methods is to use the Kullback-Leibler (KL) divergence which is related to Shannon’s entropy. Similarly, the Rényi divergence of order α can be deduced from the Rényi entropy. When α tends to 1, it leads to the KL divergence. In this paper, our purpose is to derive the expression of the Rényi divergence between the probability density functions of k consecutive samples of two real first-order moving average (MA) processes by using the eigen-decompositions of their Toeplitz correlation matrices. The resulting expression is compared with the expressions of the Rao distance and the Jeffrey’s divergence (JD) based on the eigenvalues. The way these quantities evolve when k increases is then presented. When dealing with unit-zero MA processes, the derivate is infinite for the JD and finite for the others. The influence of α is also studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信