来自SCUT的暴雪挑战赛2020

J. Zhong, Yitao Yang, S. Bu
{"title":"来自SCUT的暴雪挑战赛2020","authors":"J. Zhong, Yitao Yang, S. Bu","doi":"10.21437/vcc_bc.2020-6","DOIUrl":null,"url":null,"abstract":"In this paper, we describe the SCUT text-to-speech synthesis system for the Blizzard Challenge 2020 and the task is to build a voice from the provided Mandarin dataset. We begin with our system architecture composed of an end-to-end structure to convert acoustic features from textual sequences and a WaveRNN vocoder to restore the waveform. Then a BERT-based prosody prediction model to specify the prosodic information of the content is introduced. The text processing module is adjusted to uniformly encode both Mandarin and English texts, then a two-stage training method is utilized to build a bilingual speech synthesis system. Meanwhile, we employ forward attention and guided attention mechanisms to accelerate the model’s convergence. Finally, the reasons for our inefficient performance presented in the evaluation results are discussed.","PeriodicalId":355114,"journal":{"name":"Joint Workshop for the Blizzard Challenge and Voice Conversion Challenge 2020","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Submission from SCUT for Blizzard Challenge 2020\",\"authors\":\"J. Zhong, Yitao Yang, S. Bu\",\"doi\":\"10.21437/vcc_bc.2020-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe the SCUT text-to-speech synthesis system for the Blizzard Challenge 2020 and the task is to build a voice from the provided Mandarin dataset. We begin with our system architecture composed of an end-to-end structure to convert acoustic features from textual sequences and a WaveRNN vocoder to restore the waveform. Then a BERT-based prosody prediction model to specify the prosodic information of the content is introduced. The text processing module is adjusted to uniformly encode both Mandarin and English texts, then a two-stage training method is utilized to build a bilingual speech synthesis system. Meanwhile, we employ forward attention and guided attention mechanisms to accelerate the model’s convergence. Finally, the reasons for our inefficient performance presented in the evaluation results are discussed.\",\"PeriodicalId\":355114,\"journal\":{\"name\":\"Joint Workshop for the Blizzard Challenge and Voice Conversion Challenge 2020\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joint Workshop for the Blizzard Challenge and Voice Conversion Challenge 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/vcc_bc.2020-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joint Workshop for the Blizzard Challenge and Voice Conversion Challenge 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/vcc_bc.2020-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们描述了用于暴雪挑战赛2020的SCUT文本到语音合成系统,其任务是从提供的普通话数据集构建语音。首先,我们的系统架构由端到端结构组成,用于从文本序列转换声学特征,并使用WaveRNN声码器来恢复波形。然后介绍了一种基于bert的韵律预测模型来指定内容的韵律信息。调整文本处理模块对中英文文本进行统一编码,然后采用两阶段训练方法构建双语语音合成系统。同时,我们采用了前向注意和引导注意机制来加速模型的收敛。最后,讨论了评价结果中我们表现不佳的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Submission from SCUT for Blizzard Challenge 2020
In this paper, we describe the SCUT text-to-speech synthesis system for the Blizzard Challenge 2020 and the task is to build a voice from the provided Mandarin dataset. We begin with our system architecture composed of an end-to-end structure to convert acoustic features from textual sequences and a WaveRNN vocoder to restore the waveform. Then a BERT-based prosody prediction model to specify the prosodic information of the content is introduced. The text processing module is adjusted to uniformly encode both Mandarin and English texts, then a two-stage training method is utilized to build a bilingual speech synthesis system. Meanwhile, we employ forward attention and guided attention mechanisms to accelerate the model’s convergence. Finally, the reasons for our inefficient performance presented in the evaluation results are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信