{"title":"广义循环问题的组合算法","authors":"A. Goldberg, Serge A. Plotkin, É. Tardos","doi":"10.1109/SFCS.1988.21959","DOIUrl":null,"url":null,"abstract":"A generalization of the maximum-flow problem is considered in which the amounts of flow entering and leaving an arc are linearly related. More precisely, if x(e) units of flow enter an arc e, x(e) lambda (e) units arrive at the other end. For instance, nodes of the graph can correspond to different currencies, with the multipliers being the exchange rates. Conservation of flow is required at every node except a given source node. The goal is to maximize the amount of flow excess at the source. This problem is a special case of linear programming, and therefore can be solved in polynomial time. The authors present polynomial-time combinatorial algorithms for this problem. The algorithms are simple and intuitive.<<ETX>>","PeriodicalId":113255,"journal":{"name":"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science","volume":"334 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"120","resultStr":"{\"title\":\"Combinatorial algorithms for the generalized circulation problem\",\"authors\":\"A. Goldberg, Serge A. Plotkin, É. Tardos\",\"doi\":\"10.1109/SFCS.1988.21959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A generalization of the maximum-flow problem is considered in which the amounts of flow entering and leaving an arc are linearly related. More precisely, if x(e) units of flow enter an arc e, x(e) lambda (e) units arrive at the other end. For instance, nodes of the graph can correspond to different currencies, with the multipliers being the exchange rates. Conservation of flow is required at every node except a given source node. The goal is to maximize the amount of flow excess at the source. This problem is a special case of linear programming, and therefore can be solved in polynomial time. The authors present polynomial-time combinatorial algorithms for this problem. The algorithms are simple and intuitive.<<ETX>>\",\"PeriodicalId\":113255,\"journal\":{\"name\":\"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science\",\"volume\":\"334 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"120\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1988.21959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1988.21959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combinatorial algorithms for the generalized circulation problem
A generalization of the maximum-flow problem is considered in which the amounts of flow entering and leaving an arc are linearly related. More precisely, if x(e) units of flow enter an arc e, x(e) lambda (e) units arrive at the other end. For instance, nodes of the graph can correspond to different currencies, with the multipliers being the exchange rates. Conservation of flow is required at every node except a given source node. The goal is to maximize the amount of flow excess at the source. This problem is a special case of linear programming, and therefore can be solved in polynomial time. The authors present polynomial-time combinatorial algorithms for this problem. The algorithms are simple and intuitive.<>