基于神经网络反向传播的风力发电厂永磁同步发电机输出功率优化

Sapto Nisworo, Deria Pravitasari, Iis Hamsir Ayub Wahab
{"title":"基于神经网络反向传播的风力发电厂永磁同步发电机输出功率优化","authors":"Sapto Nisworo, Deria Pravitasari, Iis Hamsir Ayub Wahab","doi":"10.33387/protk.v10i2.6040","DOIUrl":null,"url":null,"abstract":"The focus of this research is optimizing a wind power plant using a Permanent Magnet Synchronous Generator (PMSG). The backpropagation method of the artificial neural network system was chosen to optimize the output power of the wind power generator. Based on the simulation results, the backpropagation algorithm of the artificial neural network obtains the output power based on the input variable in the form of changing wind speed. The results show that the best value is learning rate = 0.5, error = 0.0001, max. epoch= 100000, neuron hidden layer = 5. The Mean Square Error (MSE) value obtained is 0.1026 reaching the goal at epoch 14845. The reverse training regretion reaches 0.99917. The optimization results are close to the specified error, which is 0.0001, while what is obtained is 0.0145. The power generated by the wind speed is 10.7 m/s before being optimized using the back propagation neural network method worth 321 watts, while the optimized power results are 409 watts. The difference in the average target power obtained is 88 watts compared to the power of the Artificial Neural Network (ANN). ","PeriodicalId":351870,"journal":{"name":"PROtek : Jurnal Ilmiah Teknik Elektro","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Permanent Magnet Synchronous Generator Output Power in Wind Power Plants with ANN Back Propagation\",\"authors\":\"Sapto Nisworo, Deria Pravitasari, Iis Hamsir Ayub Wahab\",\"doi\":\"10.33387/protk.v10i2.6040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The focus of this research is optimizing a wind power plant using a Permanent Magnet Synchronous Generator (PMSG). The backpropagation method of the artificial neural network system was chosen to optimize the output power of the wind power generator. Based on the simulation results, the backpropagation algorithm of the artificial neural network obtains the output power based on the input variable in the form of changing wind speed. The results show that the best value is learning rate = 0.5, error = 0.0001, max. epoch= 100000, neuron hidden layer = 5. The Mean Square Error (MSE) value obtained is 0.1026 reaching the goal at epoch 14845. The reverse training regretion reaches 0.99917. The optimization results are close to the specified error, which is 0.0001, while what is obtained is 0.0145. The power generated by the wind speed is 10.7 m/s before being optimized using the back propagation neural network method worth 321 watts, while the optimized power results are 409 watts. The difference in the average target power obtained is 88 watts compared to the power of the Artificial Neural Network (ANN). \",\"PeriodicalId\":351870,\"journal\":{\"name\":\"PROtek : Jurnal Ilmiah Teknik Elektro\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PROtek : Jurnal Ilmiah Teknik Elektro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33387/protk.v10i2.6040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROtek : Jurnal Ilmiah Teknik Elektro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33387/protk.v10i2.6040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是利用永磁同步发电机(PMSG)优化风力发电厂。采用人工神经网络系统的反向传播方法对风力发电机的输出功率进行优化。基于仿真结果,人工神经网络的反向传播算法以风速变化的形式获得基于输入变量的输出功率。结果表明,最优值为学习率= 0.5,误差= 0.0001,最大值。Epoch = 100000,神经元隐藏层= 5。得到的均方误差(MSE)值为0.1026,在14845 epoch达到目标。反向训练回归达到0.99917。优化结果与指定误差接近,误差为0.0001,而实际得到的误差为0.0145。反向传播神经网络方法优化前风速产生的功率为10.7 m/s,为321瓦,优化后的功率为409瓦。与人工神经网络(ANN)的功率相比,获得的平均目标功率相差88瓦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Permanent Magnet Synchronous Generator Output Power in Wind Power Plants with ANN Back Propagation
The focus of this research is optimizing a wind power plant using a Permanent Magnet Synchronous Generator (PMSG). The backpropagation method of the artificial neural network system was chosen to optimize the output power of the wind power generator. Based on the simulation results, the backpropagation algorithm of the artificial neural network obtains the output power based on the input variable in the form of changing wind speed. The results show that the best value is learning rate = 0.5, error = 0.0001, max. epoch= 100000, neuron hidden layer = 5. The Mean Square Error (MSE) value obtained is 0.1026 reaching the goal at epoch 14845. The reverse training regretion reaches 0.99917. The optimization results are close to the specified error, which is 0.0001, while what is obtained is 0.0145. The power generated by the wind speed is 10.7 m/s before being optimized using the back propagation neural network method worth 321 watts, while the optimized power results are 409 watts. The difference in the average target power obtained is 88 watts compared to the power of the Artificial Neural Network (ANN). 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信