土耳其人对科技公司评论的极性检测

Gözde Gül Şahin, Harun Resit Zafer, E. Adali
{"title":"土耳其人对科技公司评论的极性检测","authors":"Gözde Gül Şahin, Harun Resit Zafer, E. Adali","doi":"10.1109/IALP.2014.6973514","DOIUrl":null,"url":null,"abstract":"In this study, comments about technology brands are collected from a popular Turkish website, eksisözlük, and classified as positive or negative. Turkish text is preprocessed with different kinds of filters and then modeled with 1-gram, 2-grams and 3-grams language models. Naive Bayes (NB), Support Vector Machines (SVM) and K nearest neighbor (KNN) classifiers are applied on different configurations of preprocessing techniques, language models and linguistic attributes for comparison. We measured best F-measure as 0,696 on our test dataset.","PeriodicalId":117334,"journal":{"name":"2014 International Conference on Asian Language Processing (IALP)","volume":"53 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Polarity detection of Turkish comments on technology companies\",\"authors\":\"Gözde Gül Şahin, Harun Resit Zafer, E. Adali\",\"doi\":\"10.1109/IALP.2014.6973514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, comments about technology brands are collected from a popular Turkish website, eksisözlük, and classified as positive or negative. Turkish text is preprocessed with different kinds of filters and then modeled with 1-gram, 2-grams and 3-grams language models. Naive Bayes (NB), Support Vector Machines (SVM) and K nearest neighbor (KNN) classifiers are applied on different configurations of preprocessing techniques, language models and linguistic attributes for comparison. We measured best F-measure as 0,696 on our test dataset.\",\"PeriodicalId\":117334,\"journal\":{\"name\":\"2014 International Conference on Asian Language Processing (IALP)\",\"volume\":\"53 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Asian Language Processing (IALP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2014.6973514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2014.6973514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这项研究中,关于科技品牌的评论是从一个受欢迎的土耳其网站eksisözlük上收集的,并分为正面或负面。土耳其语文本用不同的过滤器进行预处理,然后用1克、2克和3克语言模型建模。将朴素贝叶斯(NB)、支持向量机(SVM)和K近邻(KNN)分类器应用于预处理技术、语言模型和语言属性的不同配置进行比较。我们在测试数据集上测量的最佳f值为0,696。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polarity detection of Turkish comments on technology companies
In this study, comments about technology brands are collected from a popular Turkish website, eksisözlük, and classified as positive or negative. Turkish text is preprocessed with different kinds of filters and then modeled with 1-gram, 2-grams and 3-grams language models. Naive Bayes (NB), Support Vector Machines (SVM) and K nearest neighbor (KNN) classifiers are applied on different configurations of preprocessing techniques, language models and linguistic attributes for comparison. We measured best F-measure as 0,696 on our test dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信