HybridSSCN:混合Conv3D和DepthwiseConv2D用于高光谱图像分类的分层特征学习架构分析

Pradeep Kumar Ladi, Murali Gopal Kakita, Ratnakar Dash, Sandeep Kumar Ladi
{"title":"HybridSSCN:混合Conv3D和DepthwiseConv2D用于高光谱图像分类的分层特征学习架构分析","authors":"Pradeep Kumar Ladi, Murali Gopal Kakita, Ratnakar Dash, Sandeep Kumar Ladi","doi":"10.1109/OCIT56763.2022.00019","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNNs) have made it possible to conduct various Hyperspectral Image (HSI) feature extraction and classification tasks at the forefront of technological innovation and development. This paper proposes a PHL framework where P, H, and L, denote PCA (Principal Component Analysis), HybridSSCN (Hybrid Spectral-Spatial ConvNet), and LinearSVC (Linear Support Vector Classifier). The HybridSSCN model is a novel deep learning (DL) architecture that incorporates a Conv3D for spectral-spatial feature learning followed by a DepthwiseConv2D layer for spatial feature learning. HybridSSCN helps in learning efficient complex and hierarchical features and aids in lowering computational costs. The features derived from HybridSSCN are classified using the LinearSVC classifier, which achieves 100% accuracy for all three benchmark datasets with 30% and 10% limited training and uneven data compared to the existing contemporary models.","PeriodicalId":425541,"journal":{"name":"2022 OITS International Conference on Information Technology (OCIT)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HybridSSCN: Analysis Of Hierarchical Feature Learning Architecture Using Blended Conv3D And DepthwiseConv2D For Hyperspectral Image Classification\",\"authors\":\"Pradeep Kumar Ladi, Murali Gopal Kakita, Ratnakar Dash, Sandeep Kumar Ladi\",\"doi\":\"10.1109/OCIT56763.2022.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional neural networks (CNNs) have made it possible to conduct various Hyperspectral Image (HSI) feature extraction and classification tasks at the forefront of technological innovation and development. This paper proposes a PHL framework where P, H, and L, denote PCA (Principal Component Analysis), HybridSSCN (Hybrid Spectral-Spatial ConvNet), and LinearSVC (Linear Support Vector Classifier). The HybridSSCN model is a novel deep learning (DL) architecture that incorporates a Conv3D for spectral-spatial feature learning followed by a DepthwiseConv2D layer for spatial feature learning. HybridSSCN helps in learning efficient complex and hierarchical features and aids in lowering computational costs. The features derived from HybridSSCN are classified using the LinearSVC classifier, which achieves 100% accuracy for all three benchmark datasets with 30% and 10% limited training and uneven data compared to the existing contemporary models.\",\"PeriodicalId\":425541,\"journal\":{\"name\":\"2022 OITS International Conference on Information Technology (OCIT)\",\"volume\":\"142 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 OITS International Conference on Information Technology (OCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCIT56763.2022.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 OITS International Conference on Information Technology (OCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCIT56763.2022.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络(cnn)使各种高光谱图像(HSI)特征提取和分类任务成为可能,处于技术创新和发展的前沿。本文提出了一个PHL框架,其中P, H和L分别表示PCA(主成分分析),HybridSSCN(混合光谱-空间ConvNet)和LinearSVC(线性支持向量分类器)。HybridSSCN模型是一种新颖的深度学习(DL)架构,它结合了用于光谱空间特征学习的Conv3D层和用于空间特征学习的DepthwiseConv2D层。HybridSSCN有助于学习有效的复杂和分层特征,并有助于降低计算成本。使用LinearSVC分类器对源自HybridSSCN的特征进行分类,与现有的当代模型相比,该分类器在30%和10%的有限训练和不均匀数据下对所有三个基准数据集实现了100%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HybridSSCN: Analysis Of Hierarchical Feature Learning Architecture Using Blended Conv3D And DepthwiseConv2D For Hyperspectral Image Classification
Convolutional neural networks (CNNs) have made it possible to conduct various Hyperspectral Image (HSI) feature extraction and classification tasks at the forefront of technological innovation and development. This paper proposes a PHL framework where P, H, and L, denote PCA (Principal Component Analysis), HybridSSCN (Hybrid Spectral-Spatial ConvNet), and LinearSVC (Linear Support Vector Classifier). The HybridSSCN model is a novel deep learning (DL) architecture that incorporates a Conv3D for spectral-spatial feature learning followed by a DepthwiseConv2D layer for spatial feature learning. HybridSSCN helps in learning efficient complex and hierarchical features and aids in lowering computational costs. The features derived from HybridSSCN are classified using the LinearSVC classifier, which achieves 100% accuracy for all three benchmark datasets with 30% and 10% limited training and uneven data compared to the existing contemporary models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信