PanoNet3D:结合语义和几何理解的激光雷达点云检测

Xia Chen, Jianren Wang, David Held, M. Hebert
{"title":"PanoNet3D:结合语义和几何理解的激光雷达点云检测","authors":"Xia Chen, Jianren Wang, David Held, M. Hebert","doi":"10.1109/3DV50981.2020.00085","DOIUrl":null,"url":null,"abstract":"Visual data in autonomous driving perception, such as camera image and LiDAR point cloud, can be interpreted as a mixture of two aspects: semantic feature and geometric structure. Semantics come from the appearance and context of objects to the sensor, while geometric structure is the actual 3D shape of point clouds. Most detectors on LiDAR point clouds focus only on analyzing the geometric structure of objects in real 3D space. Unlike previous works, we propose to learn both semantic feature and geometric structure via a unified multi-view framework. Our method exploits the nature of LiDAR scans – 2D range images, and applies well-studied 2D convolutions to extract semantic features. By fusing semantic and geometric features, our method outperforms state-of-the-art approaches in all categories by a large margin. The methodology of combining semantic and geometric features provides a unique perspective of looking at the problems in real-world 3D point cloud detection.","PeriodicalId":293399,"journal":{"name":"2020 International Conference on 3D Vision (3DV)","volume":"327 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"PanoNet3D: Combining Semantic and Geometric Understanding for LiDAR Point Cloud Detection\",\"authors\":\"Xia Chen, Jianren Wang, David Held, M. Hebert\",\"doi\":\"10.1109/3DV50981.2020.00085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual data in autonomous driving perception, such as camera image and LiDAR point cloud, can be interpreted as a mixture of two aspects: semantic feature and geometric structure. Semantics come from the appearance and context of objects to the sensor, while geometric structure is the actual 3D shape of point clouds. Most detectors on LiDAR point clouds focus only on analyzing the geometric structure of objects in real 3D space. Unlike previous works, we propose to learn both semantic feature and geometric structure via a unified multi-view framework. Our method exploits the nature of LiDAR scans – 2D range images, and applies well-studied 2D convolutions to extract semantic features. By fusing semantic and geometric features, our method outperforms state-of-the-art approaches in all categories by a large margin. The methodology of combining semantic and geometric features provides a unique perspective of looking at the problems in real-world 3D point cloud detection.\",\"PeriodicalId\":293399,\"journal\":{\"name\":\"2020 International Conference on 3D Vision (3DV)\",\"volume\":\"327 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on 3D Vision (3DV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DV50981.2020.00085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on 3D Vision (3DV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV50981.2020.00085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

自动驾驶感知中的视觉数据,如摄像头图像和LiDAR点云,可以理解为语义特征和几何结构两方面的混合。语义来自物体的外观和上下文,而几何结构是点云的实际三维形状。大多数激光雷达点云探测器只专注于分析真实三维空间中物体的几何结构。与以往的工作不同,我们提出通过统一的多视图框架来学习语义特征和几何结构。我们的方法利用了激光雷达扫描的本质-二维距离图像,并应用经过充分研究的二维卷积来提取语义特征。通过融合语义和几何特征,我们的方法在所有类别中都大大优于最先进的方法。结合语义和几何特征的方法提供了一个独特的视角来看待现实世界中的三维点云检测问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PanoNet3D: Combining Semantic and Geometric Understanding for LiDAR Point Cloud Detection
Visual data in autonomous driving perception, such as camera image and LiDAR point cloud, can be interpreted as a mixture of two aspects: semantic feature and geometric structure. Semantics come from the appearance and context of objects to the sensor, while geometric structure is the actual 3D shape of point clouds. Most detectors on LiDAR point clouds focus only on analyzing the geometric structure of objects in real 3D space. Unlike previous works, we propose to learn both semantic feature and geometric structure via a unified multi-view framework. Our method exploits the nature of LiDAR scans – 2D range images, and applies well-studied 2D convolutions to extract semantic features. By fusing semantic and geometric features, our method outperforms state-of-the-art approaches in all categories by a large margin. The methodology of combining semantic and geometric features provides a unique perspective of looking at the problems in real-world 3D point cloud detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信