闭环供应链调度问题的优化模型

M. Rostami
{"title":"闭环供应链调度问题的优化模型","authors":"M. Rostami","doi":"10.29252/jimp.10.3.29","DOIUrl":null,"url":null,"abstract":"In today's complex world and in order to increase competitiveness, planners in the manufacturing systems have focused on product distribution and collection of used products. In this paper, the closed-loop supply chain scheduling problem is investigated for the first time. A comprehensive and integrated model is presented for production scheduling, delivering products to retailers using limited-capacity vehicles, and pick-upping end of life products in order to recycle and reuse in supply chain. The aim of this problem is to minimize maximum tardiness. Due to the fact that this problem is NP-hard, a genetic algorithm is presented to solve the large-size instances by obtaining near-optimal solutions. To illustrate the importance of the problem under consideration, a case study of the motor oil supply chain is presented.","PeriodicalId":303885,"journal":{"name":"Journal of Industrial Management Perspective","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Optimization Model for Closed-Loop Supply Chain Scheduling Problem\",\"authors\":\"M. Rostami\",\"doi\":\"10.29252/jimp.10.3.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In today's complex world and in order to increase competitiveness, planners in the manufacturing systems have focused on product distribution and collection of used products. In this paper, the closed-loop supply chain scheduling problem is investigated for the first time. A comprehensive and integrated model is presented for production scheduling, delivering products to retailers using limited-capacity vehicles, and pick-upping end of life products in order to recycle and reuse in supply chain. The aim of this problem is to minimize maximum tardiness. Due to the fact that this problem is NP-hard, a genetic algorithm is presented to solve the large-size instances by obtaining near-optimal solutions. To illustrate the importance of the problem under consideration, a case study of the motor oil supply chain is presented.\",\"PeriodicalId\":303885,\"journal\":{\"name\":\"Journal of Industrial Management Perspective\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Management Perspective\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29252/jimp.10.3.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Management Perspective","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/jimp.10.3.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在当今复杂的世界中,为了提高竞争力,制造系统中的计划人员将重点放在产品分销和废旧产品的收集上。本文首次研究了闭环供应链调度问题。提出了一个全面集成的生产调度模型,利用有限容量车辆向零售商配送产品,以及回收报废产品,以便在供应链中回收和再利用。这个问题的目的是最大限度地减少迟到。由于该问题是np困难的,提出了一种遗传算法,通过获得近似最优解来求解大实例。为了说明所考虑的问题的重要性,提出了一个机油供应链的案例研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Optimization Model for Closed-Loop Supply Chain Scheduling Problem
In today's complex world and in order to increase competitiveness, planners in the manufacturing systems have focused on product distribution and collection of used products. In this paper, the closed-loop supply chain scheduling problem is investigated for the first time. A comprehensive and integrated model is presented for production scheduling, delivering products to retailers using limited-capacity vehicles, and pick-upping end of life products in order to recycle and reuse in supply chain. The aim of this problem is to minimize maximum tardiness. Due to the fact that this problem is NP-hard, a genetic algorithm is presented to solve the large-size instances by obtaining near-optimal solutions. To illustrate the importance of the problem under consideration, a case study of the motor oil supply chain is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信