S. Tongsima, C. Chantrapornchai, E. Sha, N. Passos
{"title":"SHARP:在多个管道DSP系统上减少数据危害的高效循环调度","authors":"S. Tongsima, C. Chantrapornchai, E. Sha, N. Passos","doi":"10.1109/VLSISP.1996.558358","DOIUrl":null,"url":null,"abstract":"Computation intensive DSP applications usually require a parallel/pipelined processor in order to achieve specific timing requirements. Data hazards are a major obstacle against the high performance of pipelined systems. This paper presents a novel efficient loop scheduling algorithm that reduces data hazards for those DSP applications. Such an algorithm has been embedded in a tool, called SHARP, which schedules a pipelined data flow graph to multiple pipelined units, while hiding the underlying data hazards and minimizing the execution time. This paper reports significant improvement for some well-known benchmarks, showing the efficiency of the scheduling algorithm and the flexibility of the simulation tool.","PeriodicalId":290885,"journal":{"name":"VLSI Signal Processing, IX","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"SHARP: efficient loop scheduling with data hazard reduction on multiple pipeline DSP systems\",\"authors\":\"S. Tongsima, C. Chantrapornchai, E. Sha, N. Passos\",\"doi\":\"10.1109/VLSISP.1996.558358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computation intensive DSP applications usually require a parallel/pipelined processor in order to achieve specific timing requirements. Data hazards are a major obstacle against the high performance of pipelined systems. This paper presents a novel efficient loop scheduling algorithm that reduces data hazards for those DSP applications. Such an algorithm has been embedded in a tool, called SHARP, which schedules a pipelined data flow graph to multiple pipelined units, while hiding the underlying data hazards and minimizing the execution time. This paper reports significant improvement for some well-known benchmarks, showing the efficiency of the scheduling algorithm and the flexibility of the simulation tool.\",\"PeriodicalId\":290885,\"journal\":{\"name\":\"VLSI Signal Processing, IX\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VLSI Signal Processing, IX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSISP.1996.558358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VLSI Signal Processing, IX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSISP.1996.558358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SHARP: efficient loop scheduling with data hazard reduction on multiple pipeline DSP systems
Computation intensive DSP applications usually require a parallel/pipelined processor in order to achieve specific timing requirements. Data hazards are a major obstacle against the high performance of pipelined systems. This paper presents a novel efficient loop scheduling algorithm that reduces data hazards for those DSP applications. Such an algorithm has been embedded in a tool, called SHARP, which schedules a pipelined data flow graph to multiple pipelined units, while hiding the underlying data hazards and minimizing the execution time. This paper reports significant improvement for some well-known benchmarks, showing the efficiency of the scheduling algorithm and the flexibility of the simulation tool.