基于三角基函数的时变逆最优控制

Rahel Rickenbach, Elena Arcari, M. Zeilinger
{"title":"基于三角基函数的时变逆最优控制","authors":"Rahel Rickenbach, Elena Arcari, M. Zeilinger","doi":"10.48550/arXiv.2306.02820","DOIUrl":null,"url":null,"abstract":"The choice of objective is critical for the performance of an optimal controller. When control requirements vary during operation, e.g. due to changes in the environment with which the system is interacting, these variations should be reflected in the cost function. In this paper we consider the problem of identifying a time dependent cost function from given trajectories. We propose a strategy for explicitly representing time dependency in the cost function, i.e. decomposing it into the product of an unknown time dependent parameter vector and a known state and input dependent vector, modelling the former via a linear combination of trigonometric basis functions. These are incorporated within an inverse optimal control framework that uses the Karush-Kuhn-Tucker (KKT) conditions for ensuring optimality, and allows for formulating an optimization problem with respect to a finite set of basis function hyperparameters. Results are shown for two systems in simulation and evaluated against state-of-the-art approaches.","PeriodicalId":268449,"journal":{"name":"Conference on Learning for Dynamics & Control","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time Dependent Inverse Optimal Control using Trigonometric Basis Functions\",\"authors\":\"Rahel Rickenbach, Elena Arcari, M. Zeilinger\",\"doi\":\"10.48550/arXiv.2306.02820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The choice of objective is critical for the performance of an optimal controller. When control requirements vary during operation, e.g. due to changes in the environment with which the system is interacting, these variations should be reflected in the cost function. In this paper we consider the problem of identifying a time dependent cost function from given trajectories. We propose a strategy for explicitly representing time dependency in the cost function, i.e. decomposing it into the product of an unknown time dependent parameter vector and a known state and input dependent vector, modelling the former via a linear combination of trigonometric basis functions. These are incorporated within an inverse optimal control framework that uses the Karush-Kuhn-Tucker (KKT) conditions for ensuring optimality, and allows for formulating an optimization problem with respect to a finite set of basis function hyperparameters. Results are shown for two systems in simulation and evaluated against state-of-the-art approaches.\",\"PeriodicalId\":268449,\"journal\":{\"name\":\"Conference on Learning for Dynamics & Control\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Learning for Dynamics & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2306.02820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Learning for Dynamics & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.02820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目标的选择对最优控制器的性能至关重要。当控制要求在运行过程中发生变化时,例如由于与系统相互作用的环境发生变化,这些变化应反映在成本函数中。在本文中,我们考虑从给定轨迹中识别时间相关成本函数的问题。我们提出了一种显式表示成本函数中时间依赖性的策略,即将其分解为未知时间相关参数向量与已知状态和输入相关向量的乘积,通过三角基函数的线性组合对前者进行建模。这些都包含在一个逆最优控制框架中,该框架使用Karush-Kuhn-Tucker (KKT)条件来确保最优性,并允许制定一个关于有限基函数超参数集的优化问题。结果显示了两个系统的模拟和评估对最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time Dependent Inverse Optimal Control using Trigonometric Basis Functions
The choice of objective is critical for the performance of an optimal controller. When control requirements vary during operation, e.g. due to changes in the environment with which the system is interacting, these variations should be reflected in the cost function. In this paper we consider the problem of identifying a time dependent cost function from given trajectories. We propose a strategy for explicitly representing time dependency in the cost function, i.e. decomposing it into the product of an unknown time dependent parameter vector and a known state and input dependent vector, modelling the former via a linear combination of trigonometric basis functions. These are incorporated within an inverse optimal control framework that uses the Karush-Kuhn-Tucker (KKT) conditions for ensuring optimality, and allows for formulating an optimization problem with respect to a finite set of basis function hyperparameters. Results are shown for two systems in simulation and evaluated against state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信