{"title":"修改考试题目以激励学生在高年级电动力学方面的表现","authors":"Andrew J. Mason, J. Colton","doi":"10.1119/perc.2022.pr.mason","DOIUrl":null,"url":null,"abstract":": A previous study showed that incentivizing students to correct mistakes on unit exam problems within an upper-division quantum mechanics course improved students’ problem-solving efforts on those same problems in a final exam environment, relative to a comparison group of students who were not incentivized. We attempt to replicate the quantitative portion of this study within a first-semester upper-division electromagnetism course, specifically examining students’ invoking correct concepts and applying those concepts correctly. A statistical comparison of students who accepted the offer to rework unit exam problems for partial credit, versus students who declined the offer, demonstrates a better improvement for students who chose to rework relative to students who declined. As the results suggested that unit exam performance might provide a covariate within the comparison of choice to rework between groups, the results were analyzed using ANCOVA; to understand the effect size, a pre-post normalized gain comparison was also made; statistical results were consistent across both measurements. Results additionally appear to show that incentivization works more specifically for invoking correct concepts on a primarily conceptual problem, and more specifically for applying concepts correctly on a primarily algorithmic problem. Future plans include a more complete analytical framework using think-aloud protocol interviews for students from the sample, as well as more statistical detail to determine the interaction between unit exam score and choice to rework problems.","PeriodicalId":253382,"journal":{"name":"2022 Physics Education Research Conference Proceedings","volume":"4178 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reworking exam problems to incentivize improved performance in upper-division electrodynamics\",\"authors\":\"Andrew J. Mason, J. Colton\",\"doi\":\"10.1119/perc.2022.pr.mason\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": A previous study showed that incentivizing students to correct mistakes on unit exam problems within an upper-division quantum mechanics course improved students’ problem-solving efforts on those same problems in a final exam environment, relative to a comparison group of students who were not incentivized. We attempt to replicate the quantitative portion of this study within a first-semester upper-division electromagnetism course, specifically examining students’ invoking correct concepts and applying those concepts correctly. A statistical comparison of students who accepted the offer to rework unit exam problems for partial credit, versus students who declined the offer, demonstrates a better improvement for students who chose to rework relative to students who declined. As the results suggested that unit exam performance might provide a covariate within the comparison of choice to rework between groups, the results were analyzed using ANCOVA; to understand the effect size, a pre-post normalized gain comparison was also made; statistical results were consistent across both measurements. Results additionally appear to show that incentivization works more specifically for invoking correct concepts on a primarily conceptual problem, and more specifically for applying concepts correctly on a primarily algorithmic problem. Future plans include a more complete analytical framework using think-aloud protocol interviews for students from the sample, as well as more statistical detail to determine the interaction between unit exam score and choice to rework problems.\",\"PeriodicalId\":253382,\"journal\":{\"name\":\"2022 Physics Education Research Conference Proceedings\",\"volume\":\"4178 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Physics Education Research Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1119/perc.2022.pr.mason\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Physics Education Research Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1119/perc.2022.pr.mason","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reworking exam problems to incentivize improved performance in upper-division electrodynamics
: A previous study showed that incentivizing students to correct mistakes on unit exam problems within an upper-division quantum mechanics course improved students’ problem-solving efforts on those same problems in a final exam environment, relative to a comparison group of students who were not incentivized. We attempt to replicate the quantitative portion of this study within a first-semester upper-division electromagnetism course, specifically examining students’ invoking correct concepts and applying those concepts correctly. A statistical comparison of students who accepted the offer to rework unit exam problems for partial credit, versus students who declined the offer, demonstrates a better improvement for students who chose to rework relative to students who declined. As the results suggested that unit exam performance might provide a covariate within the comparison of choice to rework between groups, the results were analyzed using ANCOVA; to understand the effect size, a pre-post normalized gain comparison was also made; statistical results were consistent across both measurements. Results additionally appear to show that incentivization works more specifically for invoking correct concepts on a primarily conceptual problem, and more specifically for applying concepts correctly on a primarily algorithmic problem. Future plans include a more complete analytical framework using think-aloud protocol interviews for students from the sample, as well as more statistical detail to determine the interaction between unit exam score and choice to rework problems.