Lin Luo, Fei Wang, Michelle X. Zhou, Yingxin Pan, Hang Chen
{"title":"谁有答案?:在智能企业社交QA系统中增加答案池","authors":"Lin Luo, Fei Wang, Michelle X. Zhou, Yingxin Pan, Hang Chen","doi":"10.1145/2557500.2557531","DOIUrl":null,"url":null,"abstract":"On top of an enterprise social platform, we are building a smart social QA system that automatically routes questions to suitable employees who are willing, able, and ready to provide answers. Due to a lack of social QA history (training data) to start with, in this paper, we present an optimization-based approach that recommends both top-matched active (seed) and inactive (prospect) answerers for a given question. Our approach includes three parts. First, it uses a predictive model to find top-ranked seed answerers by their fitness, including their ability and willingness, to answer a question. Second, it uses distance metric learning to discover prospects most similar to the seeds identified in the first step. Third, it uses a constraint-based approach to balance the selection of both seeds and prospects identified in the first two steps. As a result, not only does our solution route questions to top-matched active users, but it also engages inactive users to grow the pool of answerers. Our real-world experiments that routed 114 questions to 684 people identified from 400,000+ employees included 641 prospects (93.7%) and achieved about 70% answering rate with 83% of answers received a lot/full confidence.","PeriodicalId":287073,"journal":{"name":"Proceedings of the 19th international conference on Intelligent User Interfaces","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Who have got answers?: growing the pool of answerers in a smart enterprise social QA system\",\"authors\":\"Lin Luo, Fei Wang, Michelle X. Zhou, Yingxin Pan, Hang Chen\",\"doi\":\"10.1145/2557500.2557531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On top of an enterprise social platform, we are building a smart social QA system that automatically routes questions to suitable employees who are willing, able, and ready to provide answers. Due to a lack of social QA history (training data) to start with, in this paper, we present an optimization-based approach that recommends both top-matched active (seed) and inactive (prospect) answerers for a given question. Our approach includes three parts. First, it uses a predictive model to find top-ranked seed answerers by their fitness, including their ability and willingness, to answer a question. Second, it uses distance metric learning to discover prospects most similar to the seeds identified in the first step. Third, it uses a constraint-based approach to balance the selection of both seeds and prospects identified in the first two steps. As a result, not only does our solution route questions to top-matched active users, but it also engages inactive users to grow the pool of answerers. Our real-world experiments that routed 114 questions to 684 people identified from 400,000+ employees included 641 prospects (93.7%) and achieved about 70% answering rate with 83% of answers received a lot/full confidence.\",\"PeriodicalId\":287073,\"journal\":{\"name\":\"Proceedings of the 19th international conference on Intelligent User Interfaces\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th international conference on Intelligent User Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2557500.2557531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th international conference on Intelligent User Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2557500.2557531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Who have got answers?: growing the pool of answerers in a smart enterprise social QA system
On top of an enterprise social platform, we are building a smart social QA system that automatically routes questions to suitable employees who are willing, able, and ready to provide answers. Due to a lack of social QA history (training data) to start with, in this paper, we present an optimization-based approach that recommends both top-matched active (seed) and inactive (prospect) answerers for a given question. Our approach includes three parts. First, it uses a predictive model to find top-ranked seed answerers by their fitness, including their ability and willingness, to answer a question. Second, it uses distance metric learning to discover prospects most similar to the seeds identified in the first step. Third, it uses a constraint-based approach to balance the selection of both seeds and prospects identified in the first two steps. As a result, not only does our solution route questions to top-matched active users, but it also engages inactive users to grow the pool of answerers. Our real-world experiments that routed 114 questions to 684 people identified from 400,000+ employees included 641 prospects (93.7%) and achieved about 70% answering rate with 83% of answers received a lot/full confidence.