{"title":"基于张量因子分析的语音表示及其在说话人识别和语言识别中的应用","authors":"D. Saito, So Suzuki, N. Minematsu","doi":"10.1109/APSIPAASC47483.2019.9023128","DOIUrl":null,"url":null,"abstract":"Ahstract-This paper proposes a novel approach to speech representation for both speaker recognition and language identification by characterizing the entire feature space by a tensor. In conventional studies of both tasks, i-vector is commonly used as the state-of-the-art representation. Here, i-vector extraction can be regarded as projection of utterance-based GMM supervector onto a low-dimensional space. In this paper, for the aim of explicit modeling of the correlation among mean vectors of a GMM, an utterance is not modeled as its GMM-based supervector but as its matrix and the entire set of utterances is modeled as its tensor. By applying tensor factor analysis, we obtain a new representation for an input utterance. Experimental evaluations for speaker recognition and language identification show that our proposed approach has effectiveness especially for the speaker recognition task.","PeriodicalId":145222,"journal":{"name":"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Speech representation based on tensor factor analysis and its application to speaker recognition and language identification\",\"authors\":\"D. Saito, So Suzuki, N. Minematsu\",\"doi\":\"10.1109/APSIPAASC47483.2019.9023128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ahstract-This paper proposes a novel approach to speech representation for both speaker recognition and language identification by characterizing the entire feature space by a tensor. In conventional studies of both tasks, i-vector is commonly used as the state-of-the-art representation. Here, i-vector extraction can be regarded as projection of utterance-based GMM supervector onto a low-dimensional space. In this paper, for the aim of explicit modeling of the correlation among mean vectors of a GMM, an utterance is not modeled as its GMM-based supervector but as its matrix and the entire set of utterances is modeled as its tensor. By applying tensor factor analysis, we obtain a new representation for an input utterance. Experimental evaluations for speaker recognition and language identification show that our proposed approach has effectiveness especially for the speaker recognition task.\",\"PeriodicalId\":145222,\"journal\":{\"name\":\"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIPAASC47483.2019.9023128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPAASC47483.2019.9023128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Speech representation based on tensor factor analysis and its application to speaker recognition and language identification
Ahstract-This paper proposes a novel approach to speech representation for both speaker recognition and language identification by characterizing the entire feature space by a tensor. In conventional studies of both tasks, i-vector is commonly used as the state-of-the-art representation. Here, i-vector extraction can be regarded as projection of utterance-based GMM supervector onto a low-dimensional space. In this paper, for the aim of explicit modeling of the correlation among mean vectors of a GMM, an utterance is not modeled as its GMM-based supervector but as its matrix and the entire set of utterances is modeled as its tensor. By applying tensor factor analysis, we obtain a new representation for an input utterance. Experimental evaluations for speaker recognition and language identification show that our proposed approach has effectiveness especially for the speaker recognition task.