用于语音识别的神经网络的CMOS实现

I. Jou, Ron-Yi Liu, Chung-Yu Wu
{"title":"用于语音识别的神经网络的CMOS实现","authors":"I. Jou, Ron-Yi Liu, Chung-Yu Wu","doi":"10.1109/APCCAS.1994.514603","DOIUrl":null,"url":null,"abstract":"In this paper, a Spatiotemporal Probabilistic Neural Network (SPNN) is proposed for spatiotemporal pattern recognition. This new model is developed by applying the concept of Gaussian density function to the network structure of the SPR (Spatiotemporal Pattern Recognition). The main advantages of this new model include faster training and recalling process for patterns, and the overall architecture is also simple, modular, regular, locally connected for VLSI implementation. The CMOS current-mode IC technology is used to implement the SPNN to achieve the objective of minimum classification error in a more direct manner. In this design, neural computation is performed in analog circuits while template information is stored in digital circuits. One set of independent speaker isolated (Mandarin digit) speech database is used as an example to demonstrate the superiority of the neural networks for spatiotemporal pattern recognition.","PeriodicalId":231368,"journal":{"name":"Proceedings of APCCAS'94 - 1994 Asia Pacific Conference on Circuits and Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"CMOS implementation of neural networks for speech recognition\",\"authors\":\"I. Jou, Ron-Yi Liu, Chung-Yu Wu\",\"doi\":\"10.1109/APCCAS.1994.514603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a Spatiotemporal Probabilistic Neural Network (SPNN) is proposed for spatiotemporal pattern recognition. This new model is developed by applying the concept of Gaussian density function to the network structure of the SPR (Spatiotemporal Pattern Recognition). The main advantages of this new model include faster training and recalling process for patterns, and the overall architecture is also simple, modular, regular, locally connected for VLSI implementation. The CMOS current-mode IC technology is used to implement the SPNN to achieve the objective of minimum classification error in a more direct manner. In this design, neural computation is performed in analog circuits while template information is stored in digital circuits. One set of independent speaker isolated (Mandarin digit) speech database is used as an example to demonstrate the superiority of the neural networks for spatiotemporal pattern recognition.\",\"PeriodicalId\":231368,\"journal\":{\"name\":\"Proceedings of APCCAS'94 - 1994 Asia Pacific Conference on Circuits and Systems\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of APCCAS'94 - 1994 Asia Pacific Conference on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCCAS.1994.514603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of APCCAS'94 - 1994 Asia Pacific Conference on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS.1994.514603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种用于时空模式识别的时空概率神经网络(SPNN)。该模型将高斯密度函数的概念应用于SPR(时空模式识别)的网络结构中。这种新模型的主要优点包括更快的模式训练和召回过程,并且整体架构也简单,模块化,规则,适合VLSI实现的本地连接。采用CMOS电流模集成电路技术实现SPNN,以更直接的方式实现分类误差最小的目标。在本设计中,神经计算在模拟电路中进行,模板信息存储在数字电路中。以一组独立说话人隔离(汉语数字)语音数据库为例,验证了神经网络在时空模式识别中的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CMOS implementation of neural networks for speech recognition
In this paper, a Spatiotemporal Probabilistic Neural Network (SPNN) is proposed for spatiotemporal pattern recognition. This new model is developed by applying the concept of Gaussian density function to the network structure of the SPR (Spatiotemporal Pattern Recognition). The main advantages of this new model include faster training and recalling process for patterns, and the overall architecture is also simple, modular, regular, locally connected for VLSI implementation. The CMOS current-mode IC technology is used to implement the SPNN to achieve the objective of minimum classification error in a more direct manner. In this design, neural computation is performed in analog circuits while template information is stored in digital circuits. One set of independent speaker isolated (Mandarin digit) speech database is used as an example to demonstrate the superiority of the neural networks for spatiotemporal pattern recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信