Yuhan Shi, Sangheon Oh, Jaeseoung Park, J. D. Valle, Pavel Salev, Ivan K. Schuller, D. Kuzum
{"title":"Ag-CBRAM交叉棒和Mott ReLU神经元的集成,在硬件上有效实现深度神经网络","authors":"Yuhan Shi, Sangheon Oh, Jaeseoung Park, J. D. Valle, Pavel Salev, Ivan K. Schuller, D. Kuzum","doi":"10.1088/2634-4386/aceea9","DOIUrl":null,"url":null,"abstract":"In-memory computing with emerging non-volatile memory devices (eNVMs) has shown promising results in accelerating matrix-vector multiplications. However, activation function calculations are still being implemented with general processors or large and complex neuron peripheral circuits. Here, we present the integration of Ag-based conductive bridge random access memory (Ag-CBRAM) crossbar arrays with Mott rectified linear unit (ReLU) activation neurons for scalable, energy and area-efficient hardware (HW) implementation of deep neural networks. We develop Ag-CBRAM devices that can achieve a high ON/OFF ratio and multi-level programmability. Compact and energy-efficient Mott ReLU neuron devices implementing ReLU activation function are directly connected to the columns of Ag-CBRAM crossbars to compute the output from the weighted sum current. We implement convolution filters and activations for VGG-16 using our integrated HW and demonstrate the successful generation of feature maps for CIFAR-10 images in HW. Our approach paves a new way toward building a highly compact and energy-efficient eNVMs-based in-memory computing system.","PeriodicalId":198030,"journal":{"name":"Neuromorphic Computing and Engineering","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Integration of Ag-CBRAM crossbars and Mott ReLU neurons for efficient implementation of deep neural networks in hardware\",\"authors\":\"Yuhan Shi, Sangheon Oh, Jaeseoung Park, J. D. Valle, Pavel Salev, Ivan K. Schuller, D. Kuzum\",\"doi\":\"10.1088/2634-4386/aceea9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In-memory computing with emerging non-volatile memory devices (eNVMs) has shown promising results in accelerating matrix-vector multiplications. However, activation function calculations are still being implemented with general processors or large and complex neuron peripheral circuits. Here, we present the integration of Ag-based conductive bridge random access memory (Ag-CBRAM) crossbar arrays with Mott rectified linear unit (ReLU) activation neurons for scalable, energy and area-efficient hardware (HW) implementation of deep neural networks. We develop Ag-CBRAM devices that can achieve a high ON/OFF ratio and multi-level programmability. Compact and energy-efficient Mott ReLU neuron devices implementing ReLU activation function are directly connected to the columns of Ag-CBRAM crossbars to compute the output from the weighted sum current. We implement convolution filters and activations for VGG-16 using our integrated HW and demonstrate the successful generation of feature maps for CIFAR-10 images in HW. Our approach paves a new way toward building a highly compact and energy-efficient eNVMs-based in-memory computing system.\",\"PeriodicalId\":198030,\"journal\":{\"name\":\"Neuromorphic Computing and Engineering\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuromorphic Computing and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2634-4386/aceea9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuromorphic Computing and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2634-4386/aceea9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integration of Ag-CBRAM crossbars and Mott ReLU neurons for efficient implementation of deep neural networks in hardware
In-memory computing with emerging non-volatile memory devices (eNVMs) has shown promising results in accelerating matrix-vector multiplications. However, activation function calculations are still being implemented with general processors or large and complex neuron peripheral circuits. Here, we present the integration of Ag-based conductive bridge random access memory (Ag-CBRAM) crossbar arrays with Mott rectified linear unit (ReLU) activation neurons for scalable, energy and area-efficient hardware (HW) implementation of deep neural networks. We develop Ag-CBRAM devices that can achieve a high ON/OFF ratio and multi-level programmability. Compact and energy-efficient Mott ReLU neuron devices implementing ReLU activation function are directly connected to the columns of Ag-CBRAM crossbars to compute the output from the weighted sum current. We implement convolution filters and activations for VGG-16 using our integrated HW and demonstrate the successful generation of feature maps for CIFAR-10 images in HW. Our approach paves a new way toward building a highly compact and energy-efficient eNVMs-based in-memory computing system.