复合信息瓶颈程序

Michael Dikshtein, N. Weinberger, S. Shamai
{"title":"复合信息瓶颈程序","authors":"Michael Dikshtein, N. Weinberger, S. Shamai","doi":"10.1109/ISIT50566.2022.9834812","DOIUrl":null,"url":null,"abstract":"Motivated by the emerging technology of oblivious processing in remote radio heads with universal decoders, we formulate and analyze in this paper a compound version of the information bottleneck problem. In this problem, a Markov chain X→Y→ Z is assumed, and the marginals PX and PY are set. The mutual information between X and Z is sought to be maximized over the choice of the conditional probability of Z given Y from a given class, under the worst choice of the joint probability of the pair (X,Y) from a different class. We provide values, bounds, and various characterizations for specific instances of this problem: the binary symmetric case, the scalar Gaussian case, the vector Gaussian case, the symmetric modulo-additive case, and the total variation constraints case. Finally, for the general case, we propose a Blahut-Arimoto type of alternating iterations algorithm to find a consistent solution to this problem.","PeriodicalId":348168,"journal":{"name":"2022 IEEE International Symposium on Information Theory (ISIT)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Compound Information Bottleneck Program\",\"authors\":\"Michael Dikshtein, N. Weinberger, S. Shamai\",\"doi\":\"10.1109/ISIT50566.2022.9834812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the emerging technology of oblivious processing in remote radio heads with universal decoders, we formulate and analyze in this paper a compound version of the information bottleneck problem. In this problem, a Markov chain X→Y→ Z is assumed, and the marginals PX and PY are set. The mutual information between X and Z is sought to be maximized over the choice of the conditional probability of Z given Y from a given class, under the worst choice of the joint probability of the pair (X,Y) from a different class. We provide values, bounds, and various characterizations for specific instances of this problem: the binary symmetric case, the scalar Gaussian case, the vector Gaussian case, the symmetric modulo-additive case, and the total variation constraints case. Finally, for the general case, we propose a Blahut-Arimoto type of alternating iterations algorithm to find a consistent solution to this problem.\",\"PeriodicalId\":348168,\"journal\":{\"name\":\"2022 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT50566.2022.9834812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT50566.2022.9834812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在具有通用解码器的远程无线电头的遗忘处理技术的激励下,我们在本文中制定和分析了信息瓶颈问题的复合版本。在这个问题中,假设有一条马尔可夫链X→Y→Z,并确定其边际PX和PY。X和Z之间的互信息寻求在给定类中给定Y的Z的条件概率的选择上最大化,在不同类中对(X,Y)的联合概率的最差选择下。我们为这个问题的具体实例提供了值、界和各种特征:二元对称情况、标量高斯情况、向量高斯情况、对称模加性情况和总变分约束情况。最后,对于一般情况,我们提出了Blahut-Arimoto型交替迭代算法来寻找该问题的一致解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Compound Information Bottleneck Program
Motivated by the emerging technology of oblivious processing in remote radio heads with universal decoders, we formulate and analyze in this paper a compound version of the information bottleneck problem. In this problem, a Markov chain X→Y→ Z is assumed, and the marginals PX and PY are set. The mutual information between X and Z is sought to be maximized over the choice of the conditional probability of Z given Y from a given class, under the worst choice of the joint probability of the pair (X,Y) from a different class. We provide values, bounds, and various characterizations for specific instances of this problem: the binary symmetric case, the scalar Gaussian case, the vector Gaussian case, the symmetric modulo-additive case, and the total variation constraints case. Finally, for the general case, we propose a Blahut-Arimoto type of alternating iterations algorithm to find a consistent solution to this problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信