考虑综合、约束、韧性撕裂和加载率影响的主曲线程序

S. Lindqvist, K. Wallin
{"title":"考虑综合、约束、韧性撕裂和加载率影响的主曲线程序","authors":"S. Lindqvist, K. Wallin","doi":"10.1115/pvp2019-93844","DOIUrl":null,"url":null,"abstract":"\n The probability of brittle fracture is affected, aside from the crack driving force, by changes in constraint, loading rate and crack propagation due to an increase in the sampling volume. In addition, crack propagation, per se, can lead to constraint changes and it also affects the effective strain rate at the crack tip. Especially in the case of leak before break (LBB) where a surface crack transforms instantaneously to a through-wall crack, the increase in local strain rate combined with constraint change and ductile crack extension can be sufficient to cause a transition from ductile fracture to brittle fracture. This, and other similar events, require the development of an advanced Master Curve procedure to account for combined effect of constraint, ductile tearing and loading rate on the brittle fracture probability. A simplified methodology for achieving this is outlined and demonstrated here.","PeriodicalId":428760,"journal":{"name":"Volume 6A: Materials and Fabrication","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Master Curve Procedure Accounting for the Combined, Constraint, Ductile Tearing and Loading Rate Effects\",\"authors\":\"S. Lindqvist, K. Wallin\",\"doi\":\"10.1115/pvp2019-93844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The probability of brittle fracture is affected, aside from the crack driving force, by changes in constraint, loading rate and crack propagation due to an increase in the sampling volume. In addition, crack propagation, per se, can lead to constraint changes and it also affects the effective strain rate at the crack tip. Especially in the case of leak before break (LBB) where a surface crack transforms instantaneously to a through-wall crack, the increase in local strain rate combined with constraint change and ductile crack extension can be sufficient to cause a transition from ductile fracture to brittle fracture. This, and other similar events, require the development of an advanced Master Curve procedure to account for combined effect of constraint, ductile tearing and loading rate on the brittle fracture probability. A simplified methodology for achieving this is outlined and demonstrated here.\",\"PeriodicalId\":428760,\"journal\":{\"name\":\"Volume 6A: Materials and Fabrication\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 6A: Materials and Fabrication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/pvp2019-93844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6A: Materials and Fabrication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2019-93844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

试样体积的增大除了影响裂纹驱动力外,还会影响试样的约束、加载速率和裂纹扩展的变化。此外,裂纹扩展本身会导致约束变化,也会影响裂纹尖端的有效应变率。特别是在先漏后破(LBB)的情况下,当表面裂纹瞬间转变为穿壁裂纹时,局部应变率的增加加上约束变化和韧性裂纹的扩展足以引起韧性断裂向脆性断裂的过渡。这种情况,以及其他类似的情况,需要开发一种先进的主曲线程序,以考虑约束、韧性撕裂和加载速率对脆性断裂概率的综合影响。这里概述并演示了实现这一目标的简化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Master Curve Procedure Accounting for the Combined, Constraint, Ductile Tearing and Loading Rate Effects
The probability of brittle fracture is affected, aside from the crack driving force, by changes in constraint, loading rate and crack propagation due to an increase in the sampling volume. In addition, crack propagation, per se, can lead to constraint changes and it also affects the effective strain rate at the crack tip. Especially in the case of leak before break (LBB) where a surface crack transforms instantaneously to a through-wall crack, the increase in local strain rate combined with constraint change and ductile crack extension can be sufficient to cause a transition from ductile fracture to brittle fracture. This, and other similar events, require the development of an advanced Master Curve procedure to account for combined effect of constraint, ductile tearing and loading rate on the brittle fracture probability. A simplified methodology for achieving this is outlined and demonstrated here.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信