稠密杂波下无人机多目标跟踪的基于密度的递归RANSAC算法

Feng Yang, Weikang Tang, Hua Lan
{"title":"稠密杂波下无人机多目标跟踪的基于密度的递归RANSAC算法","authors":"Feng Yang, Weikang Tang, Hua Lan","doi":"10.1109/ICCA.2017.8003029","DOIUrl":null,"url":null,"abstract":"Target tracking is a hot topic for unmanned aerial vehicle surveillance. Recently, the novel random sample consensus (RANSAC) algorithm shows a good tracking performance in dense clutter environment. However, the heavy computational burden limits the usage for unmanned aerial vehicle (UAV). In this paper, a density-based recursive random sample consensus (DBR-RANSAC) algorithm is proposed, which utilizes the density property of measurements within several steps to direct sampling. In the DBR-RANSAC, the randomness of sampling can be avoided and the computation complexity can be reduced particularly in dense clutter. The simulation results show the validity of the proposed algorithm.","PeriodicalId":379025,"journal":{"name":"2017 13th IEEE International Conference on Control & Automation (ICCA)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A density-based recursive RANSAC algorithm for unmanned aerial vehicle multi-target tracking in dense clutter\",\"authors\":\"Feng Yang, Weikang Tang, Hua Lan\",\"doi\":\"10.1109/ICCA.2017.8003029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Target tracking is a hot topic for unmanned aerial vehicle surveillance. Recently, the novel random sample consensus (RANSAC) algorithm shows a good tracking performance in dense clutter environment. However, the heavy computational burden limits the usage for unmanned aerial vehicle (UAV). In this paper, a density-based recursive random sample consensus (DBR-RANSAC) algorithm is proposed, which utilizes the density property of measurements within several steps to direct sampling. In the DBR-RANSAC, the randomness of sampling can be avoided and the computation complexity can be reduced particularly in dense clutter. The simulation results show the validity of the proposed algorithm.\",\"PeriodicalId\":379025,\"journal\":{\"name\":\"2017 13th IEEE International Conference on Control & Automation (ICCA)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th IEEE International Conference on Control & Automation (ICCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCA.2017.8003029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IEEE International Conference on Control & Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2017.8003029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

目标跟踪是无人机监控领域的研究热点。近年来,随机样本一致性(RANSAC)算法在密集杂波环境下显示出良好的跟踪性能。然而,巨大的计算负担限制了无人机的使用。本文提出了一种基于密度的递归随机样本一致性(DBR-RANSAC)算法,该算法利用多步测量的密度特性直接抽样。在DBR-RANSAC中,可以避免采样的随机性,特别是在密集杂波情况下,可以降低计算复杂度。仿真结果表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A density-based recursive RANSAC algorithm for unmanned aerial vehicle multi-target tracking in dense clutter
Target tracking is a hot topic for unmanned aerial vehicle surveillance. Recently, the novel random sample consensus (RANSAC) algorithm shows a good tracking performance in dense clutter environment. However, the heavy computational burden limits the usage for unmanned aerial vehicle (UAV). In this paper, a density-based recursive random sample consensus (DBR-RANSAC) algorithm is proposed, which utilizes the density property of measurements within several steps to direct sampling. In the DBR-RANSAC, the randomness of sampling can be avoided and the computation complexity can be reduced particularly in dense clutter. The simulation results show the validity of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信