用有限元法分析烧结纳米铜无镀层碰撞柱的力学性能

S. Kohara, T. Aoki, Chinami Marushima, C. Taylor, K. Sueoka, T. Hisada
{"title":"用有限元法分析烧结纳米铜无镀层碰撞柱的力学性能","authors":"S. Kohara, T. Aoki, Chinami Marushima, C. Taylor, K. Sueoka, T. Hisada","doi":"10.1109/iTherm54085.2022.9899672","DOIUrl":null,"url":null,"abstract":"Previous studies of sintered copper nanoparticles used in the plating-free bumping by injection molded solder (IMS) have shown that their microstructural features depend on the sintering conditions such as temperature and gas atmosphere. The other study has shown that the elastic modulus and yield of sintered Cu nanoparticles (NPs) also depend on the sintering temperature. In this report, the relationships between the morphological features and elastic modulus of sintered Cu nanoparticles is studied by nanoindentation and by finite element method (FEM). Mechanical testing by nanoindentation revealed that the elastic modulus of sintered Cu nanoparticles depends not only on the sintering temperature, but also on the sintering gas atmosphere. The results together with the previous study on the microstructures indicate that the Cu NPs processed in nitrogen and those processed in formic acid are at the different stages of coalescence and void growth dynamics. Young’s modulus values of sintered Cu nanoparticles processed in formic acid were higher than those processed in nitrogen for the same sintering temperatures. The values of Young’s modulus for the sintering temperatures of 150, 200 and 250°C were 66, 71 and 86 GPa for the nitrogen case and 82, 100 and 99 GPa for the formic acid case, respectively. The reference value for the plated copper was 138 GPa. To elucidate the relationship between the morphological features and the mechanical properties, Young’s modulus and yield were calculated by numerical testing of representative volume elements constructed with morphological features using FEM. Morphological features used for the analyses were neck width and the void ratio which are associated with the particle coalescence and the void growth respectively. The calculation showed that an increase in the neck width results in an increase of Young’s modulus and yield whereas an increase in void ratio results in a decrease of Young’s modulus and yield. Evolution of Young’s modulus with sintering temperature was compared with that obtained by nanoindentation. For the formic acid case, the variation of Young’s modulus was best described by a hierarchical model incorporating both the neck width and the void ratio suggesting that both the particle coalescence and the void growth are important dynamics determining the mechanical properties for this system. Statistical analysis was also performed on the Young’s modulus data randomly generated by FEM to determine the relative influence of the morphological features on elastic modulus.","PeriodicalId":351706,"journal":{"name":"2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm)","volume":"67 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of process dependent mechanical properties of sintered copper nanoparticle pillars for the plating-free bumping by finite element method\",\"authors\":\"S. Kohara, T. Aoki, Chinami Marushima, C. Taylor, K. Sueoka, T. Hisada\",\"doi\":\"10.1109/iTherm54085.2022.9899672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous studies of sintered copper nanoparticles used in the plating-free bumping by injection molded solder (IMS) have shown that their microstructural features depend on the sintering conditions such as temperature and gas atmosphere. The other study has shown that the elastic modulus and yield of sintered Cu nanoparticles (NPs) also depend on the sintering temperature. In this report, the relationships between the morphological features and elastic modulus of sintered Cu nanoparticles is studied by nanoindentation and by finite element method (FEM). Mechanical testing by nanoindentation revealed that the elastic modulus of sintered Cu nanoparticles depends not only on the sintering temperature, but also on the sintering gas atmosphere. The results together with the previous study on the microstructures indicate that the Cu NPs processed in nitrogen and those processed in formic acid are at the different stages of coalescence and void growth dynamics. Young’s modulus values of sintered Cu nanoparticles processed in formic acid were higher than those processed in nitrogen for the same sintering temperatures. The values of Young’s modulus for the sintering temperatures of 150, 200 and 250°C were 66, 71 and 86 GPa for the nitrogen case and 82, 100 and 99 GPa for the formic acid case, respectively. The reference value for the plated copper was 138 GPa. To elucidate the relationship between the morphological features and the mechanical properties, Young’s modulus and yield were calculated by numerical testing of representative volume elements constructed with morphological features using FEM. Morphological features used for the analyses were neck width and the void ratio which are associated with the particle coalescence and the void growth respectively. The calculation showed that an increase in the neck width results in an increase of Young’s modulus and yield whereas an increase in void ratio results in a decrease of Young’s modulus and yield. Evolution of Young’s modulus with sintering temperature was compared with that obtained by nanoindentation. For the formic acid case, the variation of Young’s modulus was best described by a hierarchical model incorporating both the neck width and the void ratio suggesting that both the particle coalescence and the void growth are important dynamics determining the mechanical properties for this system. Statistical analysis was also performed on the Young’s modulus data randomly generated by FEM to determine the relative influence of the morphological features on elastic modulus.\",\"PeriodicalId\":351706,\"journal\":{\"name\":\"2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm)\",\"volume\":\"67 8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iTherm54085.2022.9899672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iTherm54085.2022.9899672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以往的研究表明,烧结铜纳米粒子的微观结构特征与烧结温度和气体气氛等条件有关。另一项研究表明,烧结铜纳米颗粒的弹性模量和产率也与烧结温度有关。本文采用纳米压痕法和有限元法研究了烧结铜纳米颗粒的形态特征与弹性模量之间的关系。纳米压痕力学测试表明,烧结铜纳米颗粒的弹性模量不仅与烧结温度有关,还与烧结气体气氛有关。结合前人的微观结构研究结果表明,氮处理的Cu NPs和甲酸处理的Cu NPs处于不同的聚结和空隙生长动力学阶段。在相同的烧结温度下,甲酸处理的烧结铜纳米粒子的杨氏模量值高于氮处理的烧结铜纳米粒子。在150、200和250℃的烧结温度下,氮气的杨氏模量分别为66、71和86 GPa,甲酸的杨氏模量分别为82、100和99 GPa。镀铜的参考值为138gpa。为了阐明形态特征与力学性能之间的关系,采用有限元法对具有代表性的以形态特征构成的体积单元进行了数值试验,计算了杨氏模量和屈服。用于分析的形态学特征是颈宽和空隙比,它们分别与颗粒聚并和空隙生长有关。计算结果表明,增大颈宽导致杨氏模量和屈服增大,而增大空隙率导致杨氏模量和屈服减小。比较了杨氏模量随烧结温度的变化规律和纳米压痕的变化规律。在甲酸的情况下,杨氏模量的变化最好用包含颈宽和空隙比的分层模型来描述,这表明颗粒聚并和空隙生长都是决定该体系力学性能的重要动力学因素。对有限元随机生成的杨氏模量数据进行统计分析,确定形态特征对弹性模量的相对影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of process dependent mechanical properties of sintered copper nanoparticle pillars for the plating-free bumping by finite element method
Previous studies of sintered copper nanoparticles used in the plating-free bumping by injection molded solder (IMS) have shown that their microstructural features depend on the sintering conditions such as temperature and gas atmosphere. The other study has shown that the elastic modulus and yield of sintered Cu nanoparticles (NPs) also depend on the sintering temperature. In this report, the relationships between the morphological features and elastic modulus of sintered Cu nanoparticles is studied by nanoindentation and by finite element method (FEM). Mechanical testing by nanoindentation revealed that the elastic modulus of sintered Cu nanoparticles depends not only on the sintering temperature, but also on the sintering gas atmosphere. The results together with the previous study on the microstructures indicate that the Cu NPs processed in nitrogen and those processed in formic acid are at the different stages of coalescence and void growth dynamics. Young’s modulus values of sintered Cu nanoparticles processed in formic acid were higher than those processed in nitrogen for the same sintering temperatures. The values of Young’s modulus for the sintering temperatures of 150, 200 and 250°C were 66, 71 and 86 GPa for the nitrogen case and 82, 100 and 99 GPa for the formic acid case, respectively. The reference value for the plated copper was 138 GPa. To elucidate the relationship between the morphological features and the mechanical properties, Young’s modulus and yield were calculated by numerical testing of representative volume elements constructed with morphological features using FEM. Morphological features used for the analyses were neck width and the void ratio which are associated with the particle coalescence and the void growth respectively. The calculation showed that an increase in the neck width results in an increase of Young’s modulus and yield whereas an increase in void ratio results in a decrease of Young’s modulus and yield. Evolution of Young’s modulus with sintering temperature was compared with that obtained by nanoindentation. For the formic acid case, the variation of Young’s modulus was best described by a hierarchical model incorporating both the neck width and the void ratio suggesting that both the particle coalescence and the void growth are important dynamics determining the mechanical properties for this system. Statistical analysis was also performed on the Young’s modulus data randomly generated by FEM to determine the relative influence of the morphological features on elastic modulus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信