一种基于离散信息熵和自组织映射的边缘检测方法

Jianhua Wu, Kun Wang, Liqun Gao, Zhengang Shi, Zhaoyu Pian
{"title":"一种基于离散信息熵和自组织映射的边缘检测方法","authors":"Jianhua Wu, Kun Wang, Liqun Gao, Zhengang Shi, Zhaoyu Pian","doi":"10.1109/ICIEA.2007.4318875","DOIUrl":null,"url":null,"abstract":"An edge detection method by combining image entropy and self -organizing map (SOM) is proposed in this paper. First, discrete information entropy is used to curve up the smooth region and the region of gray level abruptly changed. This can decrease the latter process. Then we transform the gray level image to ideal binary pattern of pixels. We define six classes' edge and six edge prototype vectors. These edge prototype vectors are fed into input layer of the self-organizing map (SOM). Classifying the type of edge through this network, the edge image is obtained. At last, the speckle edges are discarded from the edge image. Experimental results show that it gained better edge image compared with other edge detection methods.","PeriodicalId":231682,"journal":{"name":"2007 2nd IEEE Conference on Industrial Electronics and Applications","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Method of Edge Detection Combined by Discrete Information Entropy and Self -Organizing Map (SOM)\",\"authors\":\"Jianhua Wu, Kun Wang, Liqun Gao, Zhengang Shi, Zhaoyu Pian\",\"doi\":\"10.1109/ICIEA.2007.4318875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An edge detection method by combining image entropy and self -organizing map (SOM) is proposed in this paper. First, discrete information entropy is used to curve up the smooth region and the region of gray level abruptly changed. This can decrease the latter process. Then we transform the gray level image to ideal binary pattern of pixels. We define six classes' edge and six edge prototype vectors. These edge prototype vectors are fed into input layer of the self-organizing map (SOM). Classifying the type of edge through this network, the edge image is obtained. At last, the speckle edges are discarded from the edge image. Experimental results show that it gained better edge image compared with other edge detection methods.\",\"PeriodicalId\":231682,\"journal\":{\"name\":\"2007 2nd IEEE Conference on Industrial Electronics and Applications\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 2nd IEEE Conference on Industrial Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2007.4318875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd IEEE Conference on Industrial Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2007.4318875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种结合图像熵和自组织映射(SOM)的边缘检测方法。首先,利用离散信息熵对平滑区域和灰度突变区域进行曲线化处理;这可以减少后一个过程。然后将灰度图像转换为理想的像素二值模式。我们定义了6个类的边和6个边原型向量。这些边缘原型向量被输入到自组织映射(SOM)的输入层。通过该网络对边缘类型进行分类,得到边缘图像。最后,从边缘图像中去除散斑边缘。实验结果表明,与其他边缘检测方法相比,该方法获得了更好的边缘图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Method of Edge Detection Combined by Discrete Information Entropy and Self -Organizing Map (SOM)
An edge detection method by combining image entropy and self -organizing map (SOM) is proposed in this paper. First, discrete information entropy is used to curve up the smooth region and the region of gray level abruptly changed. This can decrease the latter process. Then we transform the gray level image to ideal binary pattern of pixels. We define six classes' edge and six edge prototype vectors. These edge prototype vectors are fed into input layer of the self-organizing map (SOM). Classifying the type of edge through this network, the edge image is obtained. At last, the speckle edges are discarded from the edge image. Experimental results show that it gained better edge image compared with other edge detection methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信