印度一次对流降暴预报应用评价

K. Pryor, C. Johny, V. S. Prasad
{"title":"印度一次对流降暴预报应用评价","authors":"K. Pryor, C. Johny, V. S. Prasad","doi":"10.1117/12.2222331","DOIUrl":null,"url":null,"abstract":"During the month of June 2015, the South Asian (or Southwest) monsoon advanced steadily from the southern to the northwestern states of India. The progression of the monsoon had an apparent effect on the relative strength of convective storm downbursts that occurred during June and July 2015. A convective downburst prediction algorithm, involving the Microburst Windspeed Potential Index (MWPI) and a satellite-derived three-band microburst risk product, and applied with meteorological geostationary satellite (KALPANA-1 VHRR and METEOSAT-7) and MODIS Aqua data, was evaluated and found to effectively indicate relative downburst intensity in both pre-monsoon and monsoon environments over various regions of India. The MWPI product, derived from T574L64 Global Forecast System (NGFS) model data, is being generated in real-time by National Center for Medium Range Weather Forecasting (NCMRWF), Ministry of Earth Sciences, India. The validation process entailed direct comparison of measured downburst-related wind gusts at airports and India Meteorological Department (IMD) observatories to adjacent MWPI values calculated from GFS and India NGFS model datasets. Favorable results include a statistically significant positive correlation between MWPI values and proximate measured downburst wind gusts with a confidence level near 100%. Case studies demonstrate the influence of the South Asian monsoon on convective storm environments and the response of the downburst prediction algorithm.","PeriodicalId":165733,"journal":{"name":"SPIE Asia-Pacific Remote Sensing","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluation of a convective downburst prediction application for India\",\"authors\":\"K. Pryor, C. Johny, V. S. Prasad\",\"doi\":\"10.1117/12.2222331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the month of June 2015, the South Asian (or Southwest) monsoon advanced steadily from the southern to the northwestern states of India. The progression of the monsoon had an apparent effect on the relative strength of convective storm downbursts that occurred during June and July 2015. A convective downburst prediction algorithm, involving the Microburst Windspeed Potential Index (MWPI) and a satellite-derived three-band microburst risk product, and applied with meteorological geostationary satellite (KALPANA-1 VHRR and METEOSAT-7) and MODIS Aqua data, was evaluated and found to effectively indicate relative downburst intensity in both pre-monsoon and monsoon environments over various regions of India. The MWPI product, derived from T574L64 Global Forecast System (NGFS) model data, is being generated in real-time by National Center for Medium Range Weather Forecasting (NCMRWF), Ministry of Earth Sciences, India. The validation process entailed direct comparison of measured downburst-related wind gusts at airports and India Meteorological Department (IMD) observatories to adjacent MWPI values calculated from GFS and India NGFS model datasets. Favorable results include a statistically significant positive correlation between MWPI values and proximate measured downburst wind gusts with a confidence level near 100%. Case studies demonstrate the influence of the South Asian monsoon on convective storm environments and the response of the downburst prediction algorithm.\",\"PeriodicalId\":165733,\"journal\":{\"name\":\"SPIE Asia-Pacific Remote Sensing\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Asia-Pacific Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2222331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Asia-Pacific Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2222331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

2015年6月,南亚(或西南)季风从印度南部向西北部各州稳步推进。季风的发展对2015年6月和7月发生的对流暴的相对强度有明显的影响。利用气象静止卫星(KALPANA-1 VHRR和METEOSAT-7)和MODIS Aqua数据,利用微暴风速潜力指数(MWPI)和卫星衍生的三波段微暴风险产品,对对流降暴预测算法进行了评估,发现该算法可以有效地预测印度不同地区季风前和季风环境下的相对降暴强度。MWPI产品来源于T574L64全球预报系统(NGFS)模式数据,由印度地球科学部国家中期天气预报中心(NCMRWF)实时生成。验证过程需要将机场和印度气象局(IMD)观测站测量的与下突相关的阵风与从GFS和印度NGFS模型数据集计算的相邻MWPI值进行直接比较。有利的结果包括MWPI值与近似值测量的下突阵风之间的统计显著正相关,置信水平接近100%。实例研究表明南亚季风对对流风暴环境的影响以及下暴预测算法的响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of a convective downburst prediction application for India
During the month of June 2015, the South Asian (or Southwest) monsoon advanced steadily from the southern to the northwestern states of India. The progression of the monsoon had an apparent effect on the relative strength of convective storm downbursts that occurred during June and July 2015. A convective downburst prediction algorithm, involving the Microburst Windspeed Potential Index (MWPI) and a satellite-derived three-band microburst risk product, and applied with meteorological geostationary satellite (KALPANA-1 VHRR and METEOSAT-7) and MODIS Aqua data, was evaluated and found to effectively indicate relative downburst intensity in both pre-monsoon and monsoon environments over various regions of India. The MWPI product, derived from T574L64 Global Forecast System (NGFS) model data, is being generated in real-time by National Center for Medium Range Weather Forecasting (NCMRWF), Ministry of Earth Sciences, India. The validation process entailed direct comparison of measured downburst-related wind gusts at airports and India Meteorological Department (IMD) observatories to adjacent MWPI values calculated from GFS and India NGFS model datasets. Favorable results include a statistically significant positive correlation between MWPI values and proximate measured downburst wind gusts with a confidence level near 100%. Case studies demonstrate the influence of the South Asian monsoon on convective storm environments and the response of the downburst prediction algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信