{"title":"超大规模文件系统中的可扩展和自适应元数据管理","authors":"Yu Hua, Yifeng Zhu, Hong Jiang, D. Feng, Lei Tian","doi":"10.1109/ICDCS.2008.32","DOIUrl":null,"url":null,"abstract":"This paper presents a scalable and adaptive decentralized metadata lookup scheme for ultra large-scale file systems (ges Petabytes or even Exabytes). Our scheme logically organizes metadata servers (MDS) into a multi-layered query hierarchy and exploits grouped bloom filters to efficiently route metadata requests to desired MDS through the hierarchy. This metadata lookup scheme can be executed at the network or memory speed, without being bounded by the performance of slow disks. Our scheme is evaluated through extensive trace-driven simulations and prototype implementation in Linux. Experimental results show that this scheme can significantly improve metadata management scalability and query efficiency in ultra large-scale storage systems.","PeriodicalId":240205,"journal":{"name":"2008 The 28th International Conference on Distributed Computing Systems","volume":"788 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Scalable and Adaptive Metadata Management in Ultra Large-Scale File Systems\",\"authors\":\"Yu Hua, Yifeng Zhu, Hong Jiang, D. Feng, Lei Tian\",\"doi\":\"10.1109/ICDCS.2008.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a scalable and adaptive decentralized metadata lookup scheme for ultra large-scale file systems (ges Petabytes or even Exabytes). Our scheme logically organizes metadata servers (MDS) into a multi-layered query hierarchy and exploits grouped bloom filters to efficiently route metadata requests to desired MDS through the hierarchy. This metadata lookup scheme can be executed at the network or memory speed, without being bounded by the performance of slow disks. Our scheme is evaluated through extensive trace-driven simulations and prototype implementation in Linux. Experimental results show that this scheme can significantly improve metadata management scalability and query efficiency in ultra large-scale storage systems.\",\"PeriodicalId\":240205,\"journal\":{\"name\":\"2008 The 28th International Conference on Distributed Computing Systems\",\"volume\":\"788 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 The 28th International Conference on Distributed Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS.2008.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 The 28th International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2008.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scalable and Adaptive Metadata Management in Ultra Large-Scale File Systems
This paper presents a scalable and adaptive decentralized metadata lookup scheme for ultra large-scale file systems (ges Petabytes or even Exabytes). Our scheme logically organizes metadata servers (MDS) into a multi-layered query hierarchy and exploits grouped bloom filters to efficiently route metadata requests to desired MDS through the hierarchy. This metadata lookup scheme can be executed at the network or memory speed, without being bounded by the performance of slow disks. Our scheme is evaluated through extensive trace-driven simulations and prototype implementation in Linux. Experimental results show that this scheme can significantly improve metadata management scalability and query efficiency in ultra large-scale storage systems.