超大规模文件系统中的可扩展和自适应元数据管理

Yu Hua, Yifeng Zhu, Hong Jiang, D. Feng, Lei Tian
{"title":"超大规模文件系统中的可扩展和自适应元数据管理","authors":"Yu Hua, Yifeng Zhu, Hong Jiang, D. Feng, Lei Tian","doi":"10.1109/ICDCS.2008.32","DOIUrl":null,"url":null,"abstract":"This paper presents a scalable and adaptive decentralized metadata lookup scheme for ultra large-scale file systems (ges Petabytes or even Exabytes). Our scheme logically organizes metadata servers (MDS) into a multi-layered query hierarchy and exploits grouped bloom filters to efficiently route metadata requests to desired MDS through the hierarchy. This metadata lookup scheme can be executed at the network or memory speed, without being bounded by the performance of slow disks. Our scheme is evaluated through extensive trace-driven simulations and prototype implementation in Linux. Experimental results show that this scheme can significantly improve metadata management scalability and query efficiency in ultra large-scale storage systems.","PeriodicalId":240205,"journal":{"name":"2008 The 28th International Conference on Distributed Computing Systems","volume":"788 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Scalable and Adaptive Metadata Management in Ultra Large-Scale File Systems\",\"authors\":\"Yu Hua, Yifeng Zhu, Hong Jiang, D. Feng, Lei Tian\",\"doi\":\"10.1109/ICDCS.2008.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a scalable and adaptive decentralized metadata lookup scheme for ultra large-scale file systems (ges Petabytes or even Exabytes). Our scheme logically organizes metadata servers (MDS) into a multi-layered query hierarchy and exploits grouped bloom filters to efficiently route metadata requests to desired MDS through the hierarchy. This metadata lookup scheme can be executed at the network or memory speed, without being bounded by the performance of slow disks. Our scheme is evaluated through extensive trace-driven simulations and prototype implementation in Linux. Experimental results show that this scheme can significantly improve metadata management scalability and query efficiency in ultra large-scale storage systems.\",\"PeriodicalId\":240205,\"journal\":{\"name\":\"2008 The 28th International Conference on Distributed Computing Systems\",\"volume\":\"788 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 The 28th International Conference on Distributed Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS.2008.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 The 28th International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2008.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

本文针对超大规模文件系统(pb级甚至Exabytes级)提出了一种可扩展和自适应的去中心化元数据查找方案。我们的方案在逻辑上将元数据服务器(MDS)组织成一个多层查询层次结构,并利用分组bloom过滤器通过层次结构有效地将元数据请求路由到所需的MDS。这种元数据查找方案可以在网络或内存速度下执行,而不受慢速磁盘性能的限制。我们的方案通过广泛的跟踪驱动仿真和在Linux上的原型实现进行了评估。实验结果表明,该方案可以显著提高超大规模存储系统中元数据管理的可扩展性和查询效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable and Adaptive Metadata Management in Ultra Large-Scale File Systems
This paper presents a scalable and adaptive decentralized metadata lookup scheme for ultra large-scale file systems (ges Petabytes or even Exabytes). Our scheme logically organizes metadata servers (MDS) into a multi-layered query hierarchy and exploits grouped bloom filters to efficiently route metadata requests to desired MDS through the hierarchy. This metadata lookup scheme can be executed at the network or memory speed, without being bounded by the performance of slow disks. Our scheme is evaluated through extensive trace-driven simulations and prototype implementation in Linux. Experimental results show that this scheme can significantly improve metadata management scalability and query efficiency in ultra large-scale storage systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信