基于启发式动态规划的非线性切换系统零和博弈最优控制

Xingjian Fu, Zizheng Li
{"title":"基于启发式动态规划的非线性切换系统零和博弈最优控制","authors":"Xingjian Fu, Zizheng Li","doi":"10.1002/oca.3005","DOIUrl":null,"url":null,"abstract":"In this article, the zero‐sum game problem of control and disturbance is studied for discrete affine nonlinear switched systems with unknown dynamical models. A two‐level heuristic dynamic programming iterative algorithm for solving the zero‐sum game problem is proposed, which can be used to solve the Hamilton‐Jacobi‐Isaacs equation associated with the optimal regulation control problem. The convergence analysis based on the value function and control strategy is given. For algorithm implementation, neural networks are used to approximate the control strategy, disturbance strategy, and value function of the game dynamic programming, respectively. A model network is used to approximate the system states with an unknown dynamical model. The iterative algorithm steps are given. Finally, the validity of the method is verified by simulation examples.","PeriodicalId":105945,"journal":{"name":"Optimal Control Applications and Methods","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zero‐sum game optimal control for the nonlinear switched systems based on heuristic dynamic programming\",\"authors\":\"Xingjian Fu, Zizheng Li\",\"doi\":\"10.1002/oca.3005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the zero‐sum game problem of control and disturbance is studied for discrete affine nonlinear switched systems with unknown dynamical models. A two‐level heuristic dynamic programming iterative algorithm for solving the zero‐sum game problem is proposed, which can be used to solve the Hamilton‐Jacobi‐Isaacs equation associated with the optimal regulation control problem. The convergence analysis based on the value function and control strategy is given. For algorithm implementation, neural networks are used to approximate the control strategy, disturbance strategy, and value function of the game dynamic programming, respectively. A model network is used to approximate the system states with an unknown dynamical model. The iterative algorithm steps are given. Finally, the validity of the method is verified by simulation examples.\",\"PeriodicalId\":105945,\"journal\":{\"name\":\"Optimal Control Applications and Methods\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimal Control Applications and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/oca.3005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.3005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有未知动力学模型的离散仿射非线性切换系统的控制与扰动的零和博弈问题。提出了一种求解零和博弈问题的两级启发式动态规划迭代算法,该算法可用于求解与最优调节控制问题相关的Hamilton - Jacobi - Isaacs方程。给出了基于值函数和控制策略的收敛性分析。在算法实现方面,利用神经网络分别逼近博弈动态规划的控制策略、干扰策略和值函数。采用模型网络对未知动力学模型的系统状态进行近似。给出了迭代算法步骤。最后,通过仿真算例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zero‐sum game optimal control for the nonlinear switched systems based on heuristic dynamic programming
In this article, the zero‐sum game problem of control and disturbance is studied for discrete affine nonlinear switched systems with unknown dynamical models. A two‐level heuristic dynamic programming iterative algorithm for solving the zero‐sum game problem is proposed, which can be used to solve the Hamilton‐Jacobi‐Isaacs equation associated with the optimal regulation control problem. The convergence analysis based on the value function and control strategy is given. For algorithm implementation, neural networks are used to approximate the control strategy, disturbance strategy, and value function of the game dynamic programming, respectively. A model network is used to approximate the system states with an unknown dynamical model. The iterative algorithm steps are given. Finally, the validity of the method is verified by simulation examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信