{"title":"动力总成弹性安装设计分析","authors":"T. Parikyan, N. Naranča, J. Neher","doi":"10.1115/ICEF2018-9539","DOIUrl":null,"url":null,"abstract":"For efficient modeling of engine (or powertrain) supported by non-linear elastic mounts, a special methodology has been elaborated. Based on it, software tool has been developed to analyze the motion of rigid body and elastic mounts, which comprises of three modules:\n • Non-linear static analysis;\n • Modal analysis (undamped and damped);\n • Forced response (in frequency domain).\n Application example of a large V12 marine engine illustrates the suggested workflow.\n The results are verified against other software tools and validated by measurements.","PeriodicalId":448421,"journal":{"name":"Volume 2: Emissions Control Systems; Instrumentation, Controls, and Hybrids; Numerical Simulation; Engine Design and Mechanical Development","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Powertrain Resilient Mounting Design Analysis\",\"authors\":\"T. Parikyan, N. Naranča, J. Neher\",\"doi\":\"10.1115/ICEF2018-9539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For efficient modeling of engine (or powertrain) supported by non-linear elastic mounts, a special methodology has been elaborated. Based on it, software tool has been developed to analyze the motion of rigid body and elastic mounts, which comprises of three modules:\\n • Non-linear static analysis;\\n • Modal analysis (undamped and damped);\\n • Forced response (in frequency domain).\\n Application example of a large V12 marine engine illustrates the suggested workflow.\\n The results are verified against other software tools and validated by measurements.\",\"PeriodicalId\":448421,\"journal\":{\"name\":\"Volume 2: Emissions Control Systems; Instrumentation, Controls, and Hybrids; Numerical Simulation; Engine Design and Mechanical Development\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Emissions Control Systems; Instrumentation, Controls, and Hybrids; Numerical Simulation; Engine Design and Mechanical Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ICEF2018-9539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Emissions Control Systems; Instrumentation, Controls, and Hybrids; Numerical Simulation; Engine Design and Mechanical Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICEF2018-9539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
For efficient modeling of engine (or powertrain) supported by non-linear elastic mounts, a special methodology has been elaborated. Based on it, software tool has been developed to analyze the motion of rigid body and elastic mounts, which comprises of three modules:
• Non-linear static analysis;
• Modal analysis (undamped and damped);
• Forced response (in frequency domain).
Application example of a large V12 marine engine illustrates the suggested workflow.
The results are verified against other software tools and validated by measurements.