改进的深度嵌入聚类模型的超参数分析

Qiying Feng, C. L. P. Chen, Jin Zhou
{"title":"改进的深度嵌入聚类模型的超参数分析","authors":"Qiying Feng, C. L. P. Chen, Jin Zhou","doi":"10.1109/SPAC46244.2018.8965509","DOIUrl":null,"url":null,"abstract":"Clustering has gained large successful in many areas in machine learning especially the computer vision and knowledge discovery. However, the clustering tasks on the high-dimension data is still the bottleneck of the clustering. And this problem mainly due to the lack of representative and important features of the data. Recently, the efficient deep clustering models including the deep embedded clustering model (DEC) and the improved deep embedded clustering model (IDEC) are proposed to solve this problem. They validated their models on the real-world datasets and improved the clustering performance compared with the traditional clustering algorithm, which have demonstrated that the superior of DEC and IDEC. Both the clustering method used in DEC and IDEC are student-t distribution, and we choose the IDEC model for further studying the robustness of these two models. Therefore, we discuss how sensitivity of hyper-parameter influence in the IDEC model, and comparative experiments are given to show the sensitivities of the hyper-meters in IDEC in term of the clustering performances.","PeriodicalId":360369,"journal":{"name":"2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hyper-parameter Analysis of the Improved Deep Embedding Clustering Model\",\"authors\":\"Qiying Feng, C. L. P. Chen, Jin Zhou\",\"doi\":\"10.1109/SPAC46244.2018.8965509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering has gained large successful in many areas in machine learning especially the computer vision and knowledge discovery. However, the clustering tasks on the high-dimension data is still the bottleneck of the clustering. And this problem mainly due to the lack of representative and important features of the data. Recently, the efficient deep clustering models including the deep embedded clustering model (DEC) and the improved deep embedded clustering model (IDEC) are proposed to solve this problem. They validated their models on the real-world datasets and improved the clustering performance compared with the traditional clustering algorithm, which have demonstrated that the superior of DEC and IDEC. Both the clustering method used in DEC and IDEC are student-t distribution, and we choose the IDEC model for further studying the robustness of these two models. Therefore, we discuss how sensitivity of hyper-parameter influence in the IDEC model, and comparative experiments are given to show the sensitivities of the hyper-meters in IDEC in term of the clustering performances.\",\"PeriodicalId\":360369,\"journal\":{\"name\":\"2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAC46244.2018.8965509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC46244.2018.8965509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

聚类在机器学习的许多领域取得了巨大的成功,尤其是在计算机视觉和知识发现方面。然而,高维数据的聚类任务仍然是聚类的瓶颈。而造成这一问题的主要原因是缺乏具有代表性和重要特征的数据。为了解决这一问题,近年来提出了深度嵌入聚类模型(DEC)和改进的深度嵌入聚类模型(IDEC)等高效深度聚类模型。他们在实际数据集上验证了他们的模型,并与传统的聚类算法相比,提高了聚类性能,证明了DEC和IDEC的优越性。DEC和IDEC中使用的聚类方法都是学生t分布,我们选择IDEC模型来进一步研究这两个模型的鲁棒性。因此,我们讨论了超参数对IDEC模型灵敏度的影响,并通过对比实验证明了IDEC模型中超参数对聚类性能的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyper-parameter Analysis of the Improved Deep Embedding Clustering Model
Clustering has gained large successful in many areas in machine learning especially the computer vision and knowledge discovery. However, the clustering tasks on the high-dimension data is still the bottleneck of the clustering. And this problem mainly due to the lack of representative and important features of the data. Recently, the efficient deep clustering models including the deep embedded clustering model (DEC) and the improved deep embedded clustering model (IDEC) are proposed to solve this problem. They validated their models on the real-world datasets and improved the clustering performance compared with the traditional clustering algorithm, which have demonstrated that the superior of DEC and IDEC. Both the clustering method used in DEC and IDEC are student-t distribution, and we choose the IDEC model for further studying the robustness of these two models. Therefore, we discuss how sensitivity of hyper-parameter influence in the IDEC model, and comparative experiments are given to show the sensitivities of the hyper-meters in IDEC in term of the clustering performances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信