M. Costa, A. Braga, B. R. Menezes, G. G. Parma, R. A. Teixeira
{"title":"基于双目标滑模控制算法的泛化控制","authors":"M. Costa, A. Braga, B. R. Menezes, G. G. Parma, R. A. Teixeira","doi":"10.1109/SBRN.2002.1181432","DOIUrl":null,"url":null,"abstract":"This paper presents a new sliding mode control algorithm that is able to guide the trajectory of a multilayer perceptron within the plane formed by the two objectives: training set error and norm of the weight vectors. The results show that the neural networks obtained are able to generate the Pareto set, from which a model with the smallest validation error is selected.","PeriodicalId":157186,"journal":{"name":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Control of generalization with a bi-objective sliding mode control algorithm\",\"authors\":\"M. Costa, A. Braga, B. R. Menezes, G. G. Parma, R. A. Teixeira\",\"doi\":\"10.1109/SBRN.2002.1181432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new sliding mode control algorithm that is able to guide the trajectory of a multilayer perceptron within the plane formed by the two objectives: training set error and norm of the weight vectors. The results show that the neural networks obtained are able to generate the Pareto set, from which a model with the smallest validation error is selected.\",\"PeriodicalId\":157186,\"journal\":{\"name\":\"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBRN.2002.1181432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2002.1181432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Control of generalization with a bi-objective sliding mode control algorithm
This paper presents a new sliding mode control algorithm that is able to guide the trajectory of a multilayer perceptron within the plane formed by the two objectives: training set error and norm of the weight vectors. The results show that the neural networks obtained are able to generate the Pareto set, from which a model with the smallest validation error is selected.