在环境辅助生活(AAL)应用中使用机器学习和反馈滤波器进行定位

Mwp Maduranga, H.K.I.S. Lakmal, Rhns Jayathissa, Wmsrb Wijayarathne, Wamm Wanniarachchi
{"title":"在环境辅助生活(AAL)应用中使用机器学习和反馈滤波器进行定位","authors":"Mwp Maduranga, H.K.I.S. Lakmal, Rhns Jayathissa, Wmsrb Wijayarathne, Wamm Wanniarachchi","doi":"10.1109/SLAAI-ICAI56923.2022.10002492","DOIUrl":null,"url":null,"abstract":"Machine Learning (ML) based Indoor Positioning Systems (IPS) are more efficient than other classical localization algorithms developed. Rather, efficiency these ML based IPS are easy to deploy in real environments. ML-based IPS initiates cognitive Location Based Services (LBS) in IoT. Among these LBSs, Ambient Assisted Living applications are curtailed. In this paper, we experiment with how to use ML classifiers in such an AAL application. During the experiments supervised classifiers Linear Discriminant Analysis Model, Quadratic Discriminant Analysis Model, Naïve Bayes Classifier Model, Decision Tree Classifier Model, and K-Nearest Neighbor Model were trained using an available Received Strength Indicator (RSSI) dataset to predict the location of a human. Algorithm Quadratic Discriminant Analysis provides a 25.88% misclassification error and 25.86% generalization error.","PeriodicalId":308901,"journal":{"name":"2022 6th SLAAI International Conference on Artificial Intelligence (SLAAI-ICAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Machine Learning and Feedback Filters for Localization in Ambient Assisted Living (AAL) Applications\",\"authors\":\"Mwp Maduranga, H.K.I.S. Lakmal, Rhns Jayathissa, Wmsrb Wijayarathne, Wamm Wanniarachchi\",\"doi\":\"10.1109/SLAAI-ICAI56923.2022.10002492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine Learning (ML) based Indoor Positioning Systems (IPS) are more efficient than other classical localization algorithms developed. Rather, efficiency these ML based IPS are easy to deploy in real environments. ML-based IPS initiates cognitive Location Based Services (LBS) in IoT. Among these LBSs, Ambient Assisted Living applications are curtailed. In this paper, we experiment with how to use ML classifiers in such an AAL application. During the experiments supervised classifiers Linear Discriminant Analysis Model, Quadratic Discriminant Analysis Model, Naïve Bayes Classifier Model, Decision Tree Classifier Model, and K-Nearest Neighbor Model were trained using an available Received Strength Indicator (RSSI) dataset to predict the location of a human. Algorithm Quadratic Discriminant Analysis provides a 25.88% misclassification error and 25.86% generalization error.\",\"PeriodicalId\":308901,\"journal\":{\"name\":\"2022 6th SLAAI International Conference on Artificial Intelligence (SLAAI-ICAI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th SLAAI International Conference on Artificial Intelligence (SLAAI-ICAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLAAI-ICAI56923.2022.10002492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th SLAAI International Conference on Artificial Intelligence (SLAAI-ICAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLAAI-ICAI56923.2022.10002492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于机器学习(ML)的室内定位系统(IPS)比其他经典的定位算法更有效。相反,这些基于机器学习的IPS很容易在实际环境中部署。基于机器学习的IPS在物联网中启动认知定位服务(LBS)。在这些lbs中,环境辅助生活应用受到限制。在本文中,我们实验了如何在这样一个AAL应用程序中使用ML分类器。在实验中,利用现有的接收强度指标(RSSI)数据集训练有监督分类器线性判别分析模型、二次判别分析模型、Naïve贝叶斯分类器模型、决策树分类器模型和k -近邻模型来预测人类的位置。二次判别分析算法的误分类误差为25.88%,泛化误差为25.86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Machine Learning and Feedback Filters for Localization in Ambient Assisted Living (AAL) Applications
Machine Learning (ML) based Indoor Positioning Systems (IPS) are more efficient than other classical localization algorithms developed. Rather, efficiency these ML based IPS are easy to deploy in real environments. ML-based IPS initiates cognitive Location Based Services (LBS) in IoT. Among these LBSs, Ambient Assisted Living applications are curtailed. In this paper, we experiment with how to use ML classifiers in such an AAL application. During the experiments supervised classifiers Linear Discriminant Analysis Model, Quadratic Discriminant Analysis Model, Naïve Bayes Classifier Model, Decision Tree Classifier Model, and K-Nearest Neighbor Model were trained using an available Received Strength Indicator (RSSI) dataset to predict the location of a human. Algorithm Quadratic Discriminant Analysis provides a 25.88% misclassification error and 25.86% generalization error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信