面向大规模无线物联网的高效低开销上行调度

Bin Li, Bo Ji, Jia Liu
{"title":"面向大规模无线物联网的高效低开销上行调度","authors":"Bin Li, Bo Ji, Jia Liu","doi":"10.23919/WIOPT.2018.8362813","DOIUrl":null,"url":null,"abstract":"With the rapid growth of Internet of Things (IoT) applications in recent years, there is a strong need for wireless uplink scheduling algorithms that determine when and which subset of a large number of users should transmit to the central controller. Different from the downlink case, the central controller in the uplink scenario typically has very limited information about the users. On the other hand, collecting all such information from a large number of users typically incurs a prohibitively high communication overhead. This motivates us to investigate the development of an efficient and low-overhead uplink scheduling algorithm that is suitable for large-scale IoT applications with limited amount of coordination from the central controller. Specifically, we first characterize a capacity outer bound subject to the sampling constraint where only a small subset of users are allowed to use control channels for system state reporting and wireless channel probing. Next, we relax the sampling constraint and propose a joint sampling and transmission algorithm, which utilizes full knowledge of channel state distributions and instantaneous queue lengths to achieve the capacity outer bound. The insights obtained from this capacity-achieving algorithm allow us to develop an efficient and low-overhead scheduling algorithm that can strictly satisfy the sampling constraint with asymptotically diminishing throughput loss. Moreover, the throughput performance of our proposed algorithm is independent of the number of users, a highly desirable property in large-scale IoT systems. Finally, we perform extensive simulations to validate our theoretical results.","PeriodicalId":231395,"journal":{"name":"2018 16th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Efficient and low-overhead uplink scheduling for large-scale wireless Internet-of-Things\",\"authors\":\"Bin Li, Bo Ji, Jia Liu\",\"doi\":\"10.23919/WIOPT.2018.8362813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid growth of Internet of Things (IoT) applications in recent years, there is a strong need for wireless uplink scheduling algorithms that determine when and which subset of a large number of users should transmit to the central controller. Different from the downlink case, the central controller in the uplink scenario typically has very limited information about the users. On the other hand, collecting all such information from a large number of users typically incurs a prohibitively high communication overhead. This motivates us to investigate the development of an efficient and low-overhead uplink scheduling algorithm that is suitable for large-scale IoT applications with limited amount of coordination from the central controller. Specifically, we first characterize a capacity outer bound subject to the sampling constraint where only a small subset of users are allowed to use control channels for system state reporting and wireless channel probing. Next, we relax the sampling constraint and propose a joint sampling and transmission algorithm, which utilizes full knowledge of channel state distributions and instantaneous queue lengths to achieve the capacity outer bound. The insights obtained from this capacity-achieving algorithm allow us to develop an efficient and low-overhead scheduling algorithm that can strictly satisfy the sampling constraint with asymptotically diminishing throughput loss. Moreover, the throughput performance of our proposed algorithm is independent of the number of users, a highly desirable property in large-scale IoT systems. Finally, we perform extensive simulations to validate our theoretical results.\",\"PeriodicalId\":231395,\"journal\":{\"name\":\"2018 16th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 16th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/WIOPT.2018.8362813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 16th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WIOPT.2018.8362813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着近年来物联网(IoT)应用的快速增长,迫切需要无线上行链路调度算法来确定何时以及将大量用户的哪个子集传输到中央控制器。与下行场景不同,上行场景中的中央控制器通常拥有非常有限的用户信息。另一方面,从大量用户那里收集所有这些信息通常会导致过高的通信开销。这促使我们研究一种高效、低开销的上行调度算法的开发,该算法适用于中央控制器协调量有限的大规模物联网应用。具体地说,我们首先描述了受制于采样约束的容量外边界,其中只允许一小部分用户使用控制通道进行系统状态报告和无线通道探测。其次,我们放宽了采样约束,提出了一种联合采样和传输算法,该算法充分利用了信道状态分布和瞬时队列长度的知识来实现容量外界。从这种容量实现算法中获得的见解使我们能够开发一种高效、低开销的调度算法,该算法可以严格满足采样约束,并且吞吐量损失渐近减小。此外,我们提出的算法的吞吐量性能与用户数量无关,这是大规模物联网系统中非常理想的特性。最后,我们进行了大量的模拟来验证我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient and low-overhead uplink scheduling for large-scale wireless Internet-of-Things
With the rapid growth of Internet of Things (IoT) applications in recent years, there is a strong need for wireless uplink scheduling algorithms that determine when and which subset of a large number of users should transmit to the central controller. Different from the downlink case, the central controller in the uplink scenario typically has very limited information about the users. On the other hand, collecting all such information from a large number of users typically incurs a prohibitively high communication overhead. This motivates us to investigate the development of an efficient and low-overhead uplink scheduling algorithm that is suitable for large-scale IoT applications with limited amount of coordination from the central controller. Specifically, we first characterize a capacity outer bound subject to the sampling constraint where only a small subset of users are allowed to use control channels for system state reporting and wireless channel probing. Next, we relax the sampling constraint and propose a joint sampling and transmission algorithm, which utilizes full knowledge of channel state distributions and instantaneous queue lengths to achieve the capacity outer bound. The insights obtained from this capacity-achieving algorithm allow us to develop an efficient and low-overhead scheduling algorithm that can strictly satisfy the sampling constraint with asymptotically diminishing throughput loss. Moreover, the throughput performance of our proposed algorithm is independent of the number of users, a highly desirable property in large-scale IoT systems. Finally, we perform extensive simulations to validate our theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信