{"title":"使用说话人特定补偿的文本依赖说话人识别","authors":"S. Laxman, P. S. Sastry","doi":"10.1109/TENCON.2003.1273350","DOIUrl":null,"url":null,"abstract":"This paper proposes a new method for text-dependent speaker recognition. The scheme is based on learning (what we refer to as) speaker-specific compensators for each speaker in the system. The compensator is essentially a speaker to speaker transformation which enables the recognition of the speech of one speaker through a speaker-dependent speech recognition system built for the other. Such a transformation, adequate for our purposes, may be achieved by a simple vector addition in the cepstral domain. This speaker-specific compensator captures the characteristics of the speaker we wish to recognize. For each speaker who is registered into the system, we learn a unique set of compensators. The speaker recognition decision is then based on which compensator achieves best speech recognition scores.","PeriodicalId":405847,"journal":{"name":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Text-dependent speaker recognition using speaker specific compensation\",\"authors\":\"S. Laxman, P. S. Sastry\",\"doi\":\"10.1109/TENCON.2003.1273350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new method for text-dependent speaker recognition. The scheme is based on learning (what we refer to as) speaker-specific compensators for each speaker in the system. The compensator is essentially a speaker to speaker transformation which enables the recognition of the speech of one speaker through a speaker-dependent speech recognition system built for the other. Such a transformation, adequate for our purposes, may be achieved by a simple vector addition in the cepstral domain. This speaker-specific compensator captures the characteristics of the speaker we wish to recognize. For each speaker who is registered into the system, we learn a unique set of compensators. The speaker recognition decision is then based on which compensator achieves best speech recognition scores.\",\"PeriodicalId\":405847,\"journal\":{\"name\":\"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2003.1273350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2003.1273350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Text-dependent speaker recognition using speaker specific compensation
This paper proposes a new method for text-dependent speaker recognition. The scheme is based on learning (what we refer to as) speaker-specific compensators for each speaker in the system. The compensator is essentially a speaker to speaker transformation which enables the recognition of the speech of one speaker through a speaker-dependent speech recognition system built for the other. Such a transformation, adequate for our purposes, may be achieved by a simple vector addition in the cepstral domain. This speaker-specific compensator captures the characteristics of the speaker we wish to recognize. For each speaker who is registered into the system, we learn a unique set of compensators. The speaker recognition decision is then based on which compensator achieves best speech recognition scores.