肿瘤模型中的神经微分跟踪控制

N. Aguilar, A. Cabrera, I. Chairez
{"title":"肿瘤模型中的神经微分跟踪控制","authors":"N. Aguilar, A. Cabrera, I. Chairez","doi":"10.1109/ACC.2006.1656556","DOIUrl":null,"url":null,"abstract":"Immunotherapy refers to the use of natural and synthetic substances to stimulate the immune response. This document provides the description on the identification process for a particular cancer mathematical model under the immunotherapy treatment by differential neural networks (DNN) and sliding mode type observer techniques. The combination of these both techniques make available a close enough following between the estimate states given by the neural network and the cancer model dynamics: these are the interleukin-2, the tumor cells and the effector cells concentrations. Besides, a feedback control design is shown using the DNN's estimated states and sliding mode control as a possible solution in the effective dose research for immunotherapy treatment. The numerical results derived by this method, implies the possibility to construct a real controller for cancer treatment using an IL-2 online sensor and an embedded system to implement the DNN scheme","PeriodicalId":265903,"journal":{"name":"2006 American Control Conference","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Neural differential tracking control in cancer model\",\"authors\":\"N. Aguilar, A. Cabrera, I. Chairez\",\"doi\":\"10.1109/ACC.2006.1656556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Immunotherapy refers to the use of natural and synthetic substances to stimulate the immune response. This document provides the description on the identification process for a particular cancer mathematical model under the immunotherapy treatment by differential neural networks (DNN) and sliding mode type observer techniques. The combination of these both techniques make available a close enough following between the estimate states given by the neural network and the cancer model dynamics: these are the interleukin-2, the tumor cells and the effector cells concentrations. Besides, a feedback control design is shown using the DNN's estimated states and sliding mode control as a possible solution in the effective dose research for immunotherapy treatment. The numerical results derived by this method, implies the possibility to construct a real controller for cancer treatment using an IL-2 online sensor and an embedded system to implement the DNN scheme\",\"PeriodicalId\":265903,\"journal\":{\"name\":\"2006 American Control Conference\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2006.1656556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2006.1656556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

免疫疗法是指利用天然和合成物质来刺激免疫反应。本文描述了微分神经网络(DNN)和滑模型观测器技术在免疫治疗下对特定癌症数学模型的识别过程。这两种技术的结合使得神经网络和癌症模型动力学给出的估计状态之间的关系足够密切:这些是白细胞介素-2,肿瘤细胞和效应细胞浓度。此外,在免疫治疗的有效剂量研究中,利用DNN的估计状态和滑模控制作为一种可能的解决方案,给出了一种反馈控制设计。通过该方法得到的数值结果表明,利用IL-2在线传感器和嵌入式系统来实现深度神经网络方案,可以构建用于癌症治疗的真实控制器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural differential tracking control in cancer model
Immunotherapy refers to the use of natural and synthetic substances to stimulate the immune response. This document provides the description on the identification process for a particular cancer mathematical model under the immunotherapy treatment by differential neural networks (DNN) and sliding mode type observer techniques. The combination of these both techniques make available a close enough following between the estimate states given by the neural network and the cancer model dynamics: these are the interleukin-2, the tumor cells and the effector cells concentrations. Besides, a feedback control design is shown using the DNN's estimated states and sliding mode control as a possible solution in the effective dose research for immunotherapy treatment. The numerical results derived by this method, implies the possibility to construct a real controller for cancer treatment using an IL-2 online sensor and an embedded system to implement the DNN scheme
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信