基于输入设计空间降维的高速链路开眼预测

Hanzhi Ma, Erping Li, A. Cangellaris, Xu Chen
{"title":"基于输入设计空间降维的高速链路开眼预测","authors":"Hanzhi Ma, Erping Li, A. Cangellaris, Xu Chen","doi":"10.1109/EMCSI38923.2020.9191544","DOIUrl":null,"url":null,"abstract":"We propose a new method, named Support Vector Regression-based Active Subspace, for the reduction of the dimensionality of the high-dimensional input space of design parameters pertinent to the predictive assessment of the eye opening prediction of high-speed links with IBIS-AMI transmitter and receiver equalization. We compare the method with Support Vector Regression model and Principal Component Analysis-based dimensionality reduction algorithm. Numerical results show that proposed method exhibits the best accuracy in predicting eye height, eye width, and eye width at 10−12 BER in the presence of correlated design variability.","PeriodicalId":189322,"journal":{"name":"2020 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expedient Prediction of Eye Opening of High-Speed Links with Input Design Space Dimensionality Reduction\",\"authors\":\"Hanzhi Ma, Erping Li, A. Cangellaris, Xu Chen\",\"doi\":\"10.1109/EMCSI38923.2020.9191544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new method, named Support Vector Regression-based Active Subspace, for the reduction of the dimensionality of the high-dimensional input space of design parameters pertinent to the predictive assessment of the eye opening prediction of high-speed links with IBIS-AMI transmitter and receiver equalization. We compare the method with Support Vector Regression model and Principal Component Analysis-based dimensionality reduction algorithm. Numerical results show that proposed method exhibits the best accuracy in predicting eye height, eye width, and eye width at 10−12 BER in the presence of correlated design variability.\",\"PeriodicalId\":189322,\"journal\":{\"name\":\"2020 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMCSI38923.2020.9191544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCSI38923.2020.9191544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对IBIS-AMI发送端和接收端均衡化高速链路开眼预测的预测评估,提出了一种基于支持向量回归的主动子空间的设计参数高维输入空间降维方法。将该方法与支持向量回归模型和基于主成分分析的降维算法进行了比较。数值结果表明,在相关设计变异性存在的情况下,该方法在10−12误码率下具有最佳的眼高、眼宽和眼宽预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expedient Prediction of Eye Opening of High-Speed Links with Input Design Space Dimensionality Reduction
We propose a new method, named Support Vector Regression-based Active Subspace, for the reduction of the dimensionality of the high-dimensional input space of design parameters pertinent to the predictive assessment of the eye opening prediction of high-speed links with IBIS-AMI transmitter and receiver equalization. We compare the method with Support Vector Regression model and Principal Component Analysis-based dimensionality reduction algorithm. Numerical results show that proposed method exhibits the best accuracy in predicting eye height, eye width, and eye width at 10−12 BER in the presence of correlated design variability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信