{"title":"0阶自主学习多模型分类器(ALMMo-0)","authors":"P. Angelov, Xiaowei Gu","doi":"10.1109/EAIS.2017.7954832","DOIUrl":null,"url":null,"abstract":"In this paper, a new type of 0-order multi-model classifier, called Autonomous Learning Multiple-Model (ALMMo-0), is proposed. The proposed classifier is non-iterative, feedforward and entirely data-driven. It automatically extracts the data clouds from the data per class and forms 0-order AnYa type fuzzy rule-based (FRB) sub-classifier for each class. The classification of new data is done using the “winner takes all” strategy according to the scores of confidence generated objectively based on the mutual distribution and ensemble properties of the data by the sub-classifiers. Numerical examples based on benchmark datasets demonstrate the high performance and computation-efficiency of the proposed classifier.","PeriodicalId":286312,"journal":{"name":"2017 Evolving and Adaptive Intelligent Systems (EAIS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Autonomous learning multi-model classifier of 0-Order (ALMMo-0)\",\"authors\":\"P. Angelov, Xiaowei Gu\",\"doi\":\"10.1109/EAIS.2017.7954832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new type of 0-order multi-model classifier, called Autonomous Learning Multiple-Model (ALMMo-0), is proposed. The proposed classifier is non-iterative, feedforward and entirely data-driven. It automatically extracts the data clouds from the data per class and forms 0-order AnYa type fuzzy rule-based (FRB) sub-classifier for each class. The classification of new data is done using the “winner takes all” strategy according to the scores of confidence generated objectively based on the mutual distribution and ensemble properties of the data by the sub-classifiers. Numerical examples based on benchmark datasets demonstrate the high performance and computation-efficiency of the proposed classifier.\",\"PeriodicalId\":286312,\"journal\":{\"name\":\"2017 Evolving and Adaptive Intelligent Systems (EAIS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Evolving and Adaptive Intelligent Systems (EAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EAIS.2017.7954832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Evolving and Adaptive Intelligent Systems (EAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAIS.2017.7954832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Autonomous learning multi-model classifier of 0-Order (ALMMo-0)
In this paper, a new type of 0-order multi-model classifier, called Autonomous Learning Multiple-Model (ALMMo-0), is proposed. The proposed classifier is non-iterative, feedforward and entirely data-driven. It automatically extracts the data clouds from the data per class and forms 0-order AnYa type fuzzy rule-based (FRB) sub-classifier for each class. The classification of new data is done using the “winner takes all” strategy according to the scores of confidence generated objectively based on the mutual distribution and ensemble properties of the data by the sub-classifiers. Numerical examples based on benchmark datasets demonstrate the high performance and computation-efficiency of the proposed classifier.