关系营销研究的过去、现在和未来——一个机器学习的视角

Kallol Das, Yogesh Mungra, Anuj Sharma, Satish Kumar
{"title":"关系营销研究的过去、现在和未来——一个机器学习的视角","authors":"Kallol Das, Yogesh Mungra, Anuj Sharma, Satish Kumar","doi":"10.1108/mip-11-2021-0393","DOIUrl":null,"url":null,"abstract":"PurposeThis paper aims to take stock of research done in the domain of relationship marketing (RM). Additionally, this article aims to identify the potential areas of future research.Design/methodology/approachThe authors have used machine learning-based structural topic modelling using R-software to analyse the dataset of 1,905 RM articles published between 1978 and 2020.FindingsStructural topic modeling (STM) analysis led to identifying 14 topics, out of which 7 (viz. customer loyalty, customer relationship management systems, interfirm and network relationships, relationship selling, services and relationship management, consumer brand relationships and relationship marketing research) have shown a rising trend. The study also proposes a taxonomical framework to summarize RM research.Originality/valueThis is the first comprehensive review of RM research spanning over more than four decades. The study’s insights would benefit future scholars of this field to plan/execute their research for greater publication success. Additionally, managers could use the practical implications for achieving better RM outcomes.","PeriodicalId":402197,"journal":{"name":"Marketing Intelligence & Planning","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Past, present and future of research in relationship marketing - a machine learning perspective\",\"authors\":\"Kallol Das, Yogesh Mungra, Anuj Sharma, Satish Kumar\",\"doi\":\"10.1108/mip-11-2021-0393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThis paper aims to take stock of research done in the domain of relationship marketing (RM). Additionally, this article aims to identify the potential areas of future research.Design/methodology/approachThe authors have used machine learning-based structural topic modelling using R-software to analyse the dataset of 1,905 RM articles published between 1978 and 2020.FindingsStructural topic modeling (STM) analysis led to identifying 14 topics, out of which 7 (viz. customer loyalty, customer relationship management systems, interfirm and network relationships, relationship selling, services and relationship management, consumer brand relationships and relationship marketing research) have shown a rising trend. The study also proposes a taxonomical framework to summarize RM research.Originality/valueThis is the first comprehensive review of RM research spanning over more than four decades. The study’s insights would benefit future scholars of this field to plan/execute their research for greater publication success. Additionally, managers could use the practical implications for achieving better RM outcomes.\",\"PeriodicalId\":402197,\"journal\":{\"name\":\"Marketing Intelligence & Planning\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marketing Intelligence & Planning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/mip-11-2021-0393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marketing Intelligence & Planning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/mip-11-2021-0393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文旨在对关系营销(RM)领域的研究进行盘点。此外,本文旨在确定未来研究的潜在领域。设计/方法/方法作者使用基于机器学习的结构主题建模,使用r软件分析1978年至2020年间发表的1905篇RM文章的数据集。结构性主题模型(STM)分析确定了14个主题,其中7个主题(即客户忠诚、客户关系管理系统、公司间和网络关系、关系销售、服务和关系管理、消费者品牌关系和关系营销研究)呈现上升趋势。本文还提出了一个分类框架来总结RM的研究。原创性/价值这是对四十多年来RM研究的第一次全面回顾。该研究的见解将有助于该领域的未来学者计划/执行他们的研究,以获得更大的出版成功。此外,管理者可以利用实际意义来实现更好的RM结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Past, present and future of research in relationship marketing - a machine learning perspective
PurposeThis paper aims to take stock of research done in the domain of relationship marketing (RM). Additionally, this article aims to identify the potential areas of future research.Design/methodology/approachThe authors have used machine learning-based structural topic modelling using R-software to analyse the dataset of 1,905 RM articles published between 1978 and 2020.FindingsStructural topic modeling (STM) analysis led to identifying 14 topics, out of which 7 (viz. customer loyalty, customer relationship management systems, interfirm and network relationships, relationship selling, services and relationship management, consumer brand relationships and relationship marketing research) have shown a rising trend. The study also proposes a taxonomical framework to summarize RM research.Originality/valueThis is the first comprehensive review of RM research spanning over more than four decades. The study’s insights would benefit future scholars of this field to plan/execute their research for greater publication success. Additionally, managers could use the practical implications for achieving better RM outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信