R. Barbone, Riccardo Mandrioli, R. F. Paternost, M. Ricco, G. Grandi
{"title":"无轨电车网格精确仿真的高精度模型:以博洛尼亚为例","authors":"R. Barbone, Riccardo Mandrioli, R. F. Paternost, M. Ricco, G. Grandi","doi":"10.1109/CPE-POWERENG58103.2023.10227471","DOIUrl":null,"url":null,"abstract":"The integration of renewable sources to catenary-powered electric traction systems is a paramount step to satisfy sustainability and smart city objectives, albeit necessitating accurate simulations of the infrastructure. This paper presents an innovative trolleybus network simulator, characterised by the modularity of the catenary model and built on an intuitive graphical user interface that offers significant topological change flexibility. The model is distinguished by high precision and moderate processing effort, bridging the gaps of existing block-based simulation tools. A graphical analysis of the voltage distribution evaluated in a section of Bologna’s trolleybus network shows the advances in precision of the proposed model.","PeriodicalId":315989,"journal":{"name":"2023 IEEE 17th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Precision Model for Accurate Simulation of Trolleybus Grids: Case Study of Bologna\",\"authors\":\"R. Barbone, Riccardo Mandrioli, R. F. Paternost, M. Ricco, G. Grandi\",\"doi\":\"10.1109/CPE-POWERENG58103.2023.10227471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integration of renewable sources to catenary-powered electric traction systems is a paramount step to satisfy sustainability and smart city objectives, albeit necessitating accurate simulations of the infrastructure. This paper presents an innovative trolleybus network simulator, characterised by the modularity of the catenary model and built on an intuitive graphical user interface that offers significant topological change flexibility. The model is distinguished by high precision and moderate processing effort, bridging the gaps of existing block-based simulation tools. A graphical analysis of the voltage distribution evaluated in a section of Bologna’s trolleybus network shows the advances in precision of the proposed model.\",\"PeriodicalId\":315989,\"journal\":{\"name\":\"2023 IEEE 17th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 17th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CPE-POWERENG58103.2023.10227471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 17th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPE-POWERENG58103.2023.10227471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-Precision Model for Accurate Simulation of Trolleybus Grids: Case Study of Bologna
The integration of renewable sources to catenary-powered electric traction systems is a paramount step to satisfy sustainability and smart city objectives, albeit necessitating accurate simulations of the infrastructure. This paper presents an innovative trolleybus network simulator, characterised by the modularity of the catenary model and built on an intuitive graphical user interface that offers significant topological change flexibility. The model is distinguished by high precision and moderate processing effort, bridging the gaps of existing block-based simulation tools. A graphical analysis of the voltage distribution evaluated in a section of Bologna’s trolleybus network shows the advances in precision of the proposed model.