粒状神经网络分类器与传统神经网络分类器的性能分析:初步结果

Gerardo Felix, G. Nápoles, R. Falcon, Rafael Bello, K. Vanhoof
{"title":"粒状神经网络分类器与传统神经网络分类器的性能分析:初步结果","authors":"Gerardo Felix, G. Nápoles, R. Falcon, Rafael Bello, K. Vanhoof","doi":"10.1109/CIVEMSA.2018.8439971","DOIUrl":null,"url":null,"abstract":"A recent trend in Machine Learning is to augment the transparency of traditional classification models using Granular Computing techniques. This approach has been found particularly useful in the neural networks field since most successful neural systems often require complex structures to behave like universal approximators. However, there is a widely-held view stating that, to build an interpretable classifier, one might have to sacrifice some prediction accuracy. We want to challenge this belief by exploring the performance of a recently introduced granular classifier termed Fuzzy-Rough Cognitive Networks against low-level (i.e., traditional) neural networks. The simulation results have shown that this neural system can attain quite competitive prediction rates while featuring a shallow, granular architecture. As a bigger picture, this study paves the way for conducting a more thorough evaluation of granular versus low-level neural classifiers in the near future.","PeriodicalId":305399,"journal":{"name":"2018 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Performance Analysis of Granular versus Traditional Neural Network Classifiers: Preliminary Results\",\"authors\":\"Gerardo Felix, G. Nápoles, R. Falcon, Rafael Bello, K. Vanhoof\",\"doi\":\"10.1109/CIVEMSA.2018.8439971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A recent trend in Machine Learning is to augment the transparency of traditional classification models using Granular Computing techniques. This approach has been found particularly useful in the neural networks field since most successful neural systems often require complex structures to behave like universal approximators. However, there is a widely-held view stating that, to build an interpretable classifier, one might have to sacrifice some prediction accuracy. We want to challenge this belief by exploring the performance of a recently introduced granular classifier termed Fuzzy-Rough Cognitive Networks against low-level (i.e., traditional) neural networks. The simulation results have shown that this neural system can attain quite competitive prediction rates while featuring a shallow, granular architecture. As a bigger picture, this study paves the way for conducting a more thorough evaluation of granular versus low-level neural classifiers in the near future.\",\"PeriodicalId\":305399,\"journal\":{\"name\":\"2018 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIVEMSA.2018.8439971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVEMSA.2018.8439971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

机器学习领域的最新趋势是利用粒计算技术提高传统分类模型的透明度。这种方法在神经网络领域尤其有用,因为大多数成功的神经系统往往需要复杂的结构才能表现得像通用近似器。然而,有一种广泛存在的观点认为,要建立一个可解释的分类器,可能需要牺牲一些预测精度。我们希望通过探索最近推出的颗粒分类器--模糊-粗糙认知网络--与低级(即传统)神经网络的性能对比,来挑战这种观点。仿真结果表明,这种神经系统可以达到相当有竞争力的预测率,同时具有浅层、粒状结构的特点。从更广阔的角度看,这项研究为在不久的将来对粒度神经分类器与低级神经分类器进行更全面的评估铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Analysis of Granular versus Traditional Neural Network Classifiers: Preliminary Results
A recent trend in Machine Learning is to augment the transparency of traditional classification models using Granular Computing techniques. This approach has been found particularly useful in the neural networks field since most successful neural systems often require complex structures to behave like universal approximators. However, there is a widely-held view stating that, to build an interpretable classifier, one might have to sacrifice some prediction accuracy. We want to challenge this belief by exploring the performance of a recently introduced granular classifier termed Fuzzy-Rough Cognitive Networks against low-level (i.e., traditional) neural networks. The simulation results have shown that this neural system can attain quite competitive prediction rates while featuring a shallow, granular architecture. As a bigger picture, this study paves the way for conducting a more thorough evaluation of granular versus low-level neural classifiers in the near future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信