关于主束的grothendieck-serre猜想

I. Panin
{"title":"关于主束的grothendieck-serre猜想","authors":"I. Panin","doi":"10.1142/9789813272880_0051","DOIUrl":null,"url":null,"abstract":"Let R be a regular local ring. Let G be a reductive group scheme over R. A wellknown conjecture due to Grothendieck and Serre assertes that a principal G-bundle over R is trivial, if it is trivial over the fraction field of R. In other words, if K is the fraction field of R, then the map of non-abelian cohomology pointed sets Hét(R;G) ! H 1 ét(K;G); induced by the inclusion of R into K, has a trivial kernel. The conjecture is solved in positive for all regular local rings contaning a field. More precisely, if the ring R contains an infinite field, then this conjecture is proved in a joint paper due to R. Fedorov and I. Panin published in 2015 in Publications l’IHES. If the ring R contains a finite field, then this conjecture is proved in 2015 in a preprint due to I. Paninwhich can be found on preprint server Linear Algebraic Groups and Related Structures. A more structured exposition can be found in Panin’s preprint of the year 2017 on arXiv.org. This and other results concerning the conjecture are discussed in the present paper. We illustrate the exposition by many interesting examples. We begin with couple results for complex algebraic varieties and develop the exposition step by step to its full generality.","PeriodicalId":318252,"journal":{"name":"Proceedings of the International Congress of Mathematicians (ICM 2018)","volume":"168 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"ON GROTHENDIECK–SERRE CONJECTURE CONCERNING PRINCIPAL BUNDLES\",\"authors\":\"I. Panin\",\"doi\":\"10.1142/9789813272880_0051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let R be a regular local ring. Let G be a reductive group scheme over R. A wellknown conjecture due to Grothendieck and Serre assertes that a principal G-bundle over R is trivial, if it is trivial over the fraction field of R. In other words, if K is the fraction field of R, then the map of non-abelian cohomology pointed sets Hét(R;G) ! H 1 ét(K;G); induced by the inclusion of R into K, has a trivial kernel. The conjecture is solved in positive for all regular local rings contaning a field. More precisely, if the ring R contains an infinite field, then this conjecture is proved in a joint paper due to R. Fedorov and I. Panin published in 2015 in Publications l’IHES. If the ring R contains a finite field, then this conjecture is proved in 2015 in a preprint due to I. Paninwhich can be found on preprint server Linear Algebraic Groups and Related Structures. A more structured exposition can be found in Panin’s preprint of the year 2017 on arXiv.org. This and other results concerning the conjecture are discussed in the present paper. We illustrate the exposition by many interesting examples. We begin with couple results for complex algebraic varieties and develop the exposition step by step to its full generality.\",\"PeriodicalId\":318252,\"journal\":{\"name\":\"Proceedings of the International Congress of Mathematicians (ICM 2018)\",\"volume\":\"168 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Congress of Mathematicians (ICM 2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789813272880_0051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Congress of Mathematicians (ICM 2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789813272880_0051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

设R是正则局部环。设G是R上的约化群格式。Grothendieck和Serre的一个著名猜想断言R上的一个主G束是平凡的,如果它在R的分数域上是平凡的,换句话说,如果K是R的分数域,则非阿贝上同点集的映射hsamt (R;G) !H 1 * * (K;G);由R包含到K中引起的,有一个平凡的核。对于所有包含域的正则局部环,这个猜想都得到了正解。更准确地说,如果环R包含无限场,那么这个猜想在R. Fedorov和I. Panin于2015年发表在Publications l’ihes上的联合论文中得到了证明。如果环R包含一个有限域,那么这个猜想在2015年在I. panin的预印本中得到了证明,该预印本可以在预印本服务器线性代数群和相关结构上找到。在arXiv.org上可以找到Panin 2017年的预印本。本文讨论了这一结果和有关这一猜想的其他结果。我们用许多有趣的例子来说明这个论述。我们从复数代数变量的几个结果开始,逐步发展到其充分的普遍性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON GROTHENDIECK–SERRE CONJECTURE CONCERNING PRINCIPAL BUNDLES
Let R be a regular local ring. Let G be a reductive group scheme over R. A wellknown conjecture due to Grothendieck and Serre assertes that a principal G-bundle over R is trivial, if it is trivial over the fraction field of R. In other words, if K is the fraction field of R, then the map of non-abelian cohomology pointed sets Hét(R;G) ! H 1 ét(K;G); induced by the inclusion of R into K, has a trivial kernel. The conjecture is solved in positive for all regular local rings contaning a field. More precisely, if the ring R contains an infinite field, then this conjecture is proved in a joint paper due to R. Fedorov and I. Panin published in 2015 in Publications l’IHES. If the ring R contains a finite field, then this conjecture is proved in 2015 in a preprint due to I. Paninwhich can be found on preprint server Linear Algebraic Groups and Related Structures. A more structured exposition can be found in Panin’s preprint of the year 2017 on arXiv.org. This and other results concerning the conjecture are discussed in the present paper. We illustrate the exposition by many interesting examples. We begin with couple results for complex algebraic varieties and develop the exposition step by step to its full generality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信