4. 弯曲空间几何

M. Dunajski
{"title":"4. 弯曲空间几何","authors":"M. Dunajski","doi":"10.1093/actrade/9780199683680.003.0004","DOIUrl":null,"url":null,"abstract":"‘Geometry of curved spaces’ shows that the curvature of a curve is an extrinsic property that is visible to people when it is viewed sitting on the plane and can be defined as a curve on the Euclidean plane. German mathematician Carl Friedrich Gauss discovered that curvature is an intrinsic property of the surface in 1828. Gauss called it Theorema Egregium, which translates from Latin as Remarkable Theorem. The extrinsic curvature of curves, defines Gaussian curvature can be computed intrinsically. Higher-dimensional generalizations of surfaces are called manifolds.","PeriodicalId":420147,"journal":{"name":"Geometry: A Very Short Introduction","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"4. Geometry of curved spaces\",\"authors\":\"M. Dunajski\",\"doi\":\"10.1093/actrade/9780199683680.003.0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"‘Geometry of curved spaces’ shows that the curvature of a curve is an extrinsic property that is visible to people when it is viewed sitting on the plane and can be defined as a curve on the Euclidean plane. German mathematician Carl Friedrich Gauss discovered that curvature is an intrinsic property of the surface in 1828. Gauss called it Theorema Egregium, which translates from Latin as Remarkable Theorem. The extrinsic curvature of curves, defines Gaussian curvature can be computed intrinsically. Higher-dimensional generalizations of surfaces are called manifolds.\",\"PeriodicalId\":420147,\"journal\":{\"name\":\"Geometry: A Very Short Introduction\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry: A Very Short Introduction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/actrade/9780199683680.003.0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry: A Very Short Introduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/actrade/9780199683680.003.0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

“弯曲空间的几何”表明,曲线的曲率是一种外在性质,当人们在平面上观察它时,它是可见的,可以定义为欧几里得平面上的曲线。德国数学家卡尔·弗里德里希·高斯在1828年发现曲率是曲面的固有属性。高斯称其为定理Egregium,从拉丁语翻译过来就是“非凡定理”。曲线的外在曲率,定义了高斯曲率,可以内在地计算。曲面的高维泛化称为流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
4. Geometry of curved spaces
‘Geometry of curved spaces’ shows that the curvature of a curve is an extrinsic property that is visible to people when it is viewed sitting on the plane and can be defined as a curve on the Euclidean plane. German mathematician Carl Friedrich Gauss discovered that curvature is an intrinsic property of the surface in 1828. Gauss called it Theorema Egregium, which translates from Latin as Remarkable Theorem. The extrinsic curvature of curves, defines Gaussian curvature can be computed intrinsically. Higher-dimensional generalizations of surfaces are called manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信