基于深度学习模型的分割图像改进特发性肺纤维化损伤预测

Sheila Leyva-López, Gerardo Hernández-Nava, Enrique Mena-Camilo, Sebastián Salazar-Colores
{"title":"基于深度学习模型的分割图像改进特发性肺纤维化损伤预测","authors":"Sheila Leyva-López, Gerardo Hernández-Nava, Enrique Mena-Camilo, Sebastián Salazar-Colores","doi":"10.1109/CAI54212.2023.00078","DOIUrl":null,"url":null,"abstract":"This work introduces a semantic segmentation model, UNet, as a preprocessing module to an algorithm predicting lung damage caused by Idiopathic Pulmonary Fibrosis. By modifying the model input through the incorporation of a guide image (a segmentation result) into the original image, we observed an improved performance of eight out of twelve tested backbones in the prediction model, with an improvement of up to 0.57 in the LLLm metric. This study underscores the significance of data preprocessing in deep learning models’ performance. The inclusion of additional data, such as segmented images, can significantly enhance a model’s ability to perform specific tasks, emphasizing the need for careful data preprocessing to obtain precise and reliable results when implementing deep learning models for lung damage prediction.","PeriodicalId":129324,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence (CAI)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Idiopathic Pulmonary Fibrosis Damage Prediction with Segmented Images in a Deep Learning Model\",\"authors\":\"Sheila Leyva-López, Gerardo Hernández-Nava, Enrique Mena-Camilo, Sebastián Salazar-Colores\",\"doi\":\"10.1109/CAI54212.2023.00078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work introduces a semantic segmentation model, UNet, as a preprocessing module to an algorithm predicting lung damage caused by Idiopathic Pulmonary Fibrosis. By modifying the model input through the incorporation of a guide image (a segmentation result) into the original image, we observed an improved performance of eight out of twelve tested backbones in the prediction model, with an improvement of up to 0.57 in the LLLm metric. This study underscores the significance of data preprocessing in deep learning models’ performance. The inclusion of additional data, such as segmented images, can significantly enhance a model’s ability to perform specific tasks, emphasizing the need for careful data preprocessing to obtain precise and reliable results when implementing deep learning models for lung damage prediction.\",\"PeriodicalId\":129324,\"journal\":{\"name\":\"2023 IEEE Conference on Artificial Intelligence (CAI)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Conference on Artificial Intelligence (CAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAI54212.2023.00078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Artificial Intelligence (CAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAI54212.2023.00078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文引入语义分割模型UNet作为预测特发性肺纤维化肺损伤算法的预处理模块。通过将引导图像(分割结果)合并到原始图像中来修改模型输入,我们观察到预测模型中12个测试骨干中有8个的性能得到了改善,LLLm指标的改进幅度高达0.57。本研究强调了数据预处理对深度学习模型性能的重要性。包含额外的数据,如分割图像,可以显着增强模型执行特定任务的能力,强调在实施肺损伤预测的深度学习模型时需要仔细的数据预处理,以获得精确可靠的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Idiopathic Pulmonary Fibrosis Damage Prediction with Segmented Images in a Deep Learning Model
This work introduces a semantic segmentation model, UNet, as a preprocessing module to an algorithm predicting lung damage caused by Idiopathic Pulmonary Fibrosis. By modifying the model input through the incorporation of a guide image (a segmentation result) into the original image, we observed an improved performance of eight out of twelve tested backbones in the prediction model, with an improvement of up to 0.57 in the LLLm metric. This study underscores the significance of data preprocessing in deep learning models’ performance. The inclusion of additional data, such as segmented images, can significantly enhance a model’s ability to perform specific tasks, emphasizing the need for careful data preprocessing to obtain precise and reliable results when implementing deep learning models for lung damage prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信