Twitter:用于会话语音情感识别的自动标记数据的新在线来源

Christopher Hines, V. Sethu, J. Epps
{"title":"Twitter:用于会话语音情感识别的自动标记数据的新在线来源","authors":"Christopher Hines, V. Sethu, J. Epps","doi":"10.1145/2813524.2813529","DOIUrl":null,"url":null,"abstract":"In the space of affect detection in multimedia, there is a strong demand for more tagged data in order to better understand human emotions, the way they are expressed, and approaches for detecting them automatically. Unfortunately, emotion datasets are typically small due to the manual process of annotating them with emotional labels. In response, we present for the first time the application of automatically tagged Twitter data to the problem of speech emotion recognition (SER). SER has been shown to benefit from the combination of acoustic and linguistic features, albeit when the linguistic training data is from the same database as the test data. Using the presence of emoticons for automatic tagging, we compile a corpus of over 800,000 tweets that is totally independent from our evaluation database. By supplementing an acoustic classifier with linguistic information, we classify the spontaneous content within the USC-IEMOCAP corpus on valence and activation descriptors. With comparison to prior literature, we demonstrate performance improvements for valence of 2% and 6% over an acoustic-only system, using linguistic training data from Twitter and IEMOCAP respectively.","PeriodicalId":197562,"journal":{"name":"Proceedings of the 1st International Workshop on Affect & Sentiment in Multimedia","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Twitter: A New Online Source of Automatically Tagged Data for Conversational Speech Emotion Recognition\",\"authors\":\"Christopher Hines, V. Sethu, J. Epps\",\"doi\":\"10.1145/2813524.2813529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the space of affect detection in multimedia, there is a strong demand for more tagged data in order to better understand human emotions, the way they are expressed, and approaches for detecting them automatically. Unfortunately, emotion datasets are typically small due to the manual process of annotating them with emotional labels. In response, we present for the first time the application of automatically tagged Twitter data to the problem of speech emotion recognition (SER). SER has been shown to benefit from the combination of acoustic and linguistic features, albeit when the linguistic training data is from the same database as the test data. Using the presence of emoticons for automatic tagging, we compile a corpus of over 800,000 tweets that is totally independent from our evaluation database. By supplementing an acoustic classifier with linguistic information, we classify the spontaneous content within the USC-IEMOCAP corpus on valence and activation descriptors. With comparison to prior literature, we demonstrate performance improvements for valence of 2% and 6% over an acoustic-only system, using linguistic training data from Twitter and IEMOCAP respectively.\",\"PeriodicalId\":197562,\"journal\":{\"name\":\"Proceedings of the 1st International Workshop on Affect & Sentiment in Multimedia\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st International Workshop on Affect & Sentiment in Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2813524.2813529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International Workshop on Affect & Sentiment in Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2813524.2813529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在多媒体情感检测领域,为了更好地理解人类情感、情感的表达方式以及自动检测情感的方法,迫切需要更多的标记数据。不幸的是,情感数据集通常很小,因为需要用情感标签进行手工注释。作为回应,我们首次提出了自动标记Twitter数据在语音情感识别(SER)问题中的应用。尽管语言训练数据与测试数据来自同一数据库,但SER已被证明受益于声学和语言特征的结合。使用表情符号进行自动标记,我们编译了一个超过80万条推文的语料库,完全独立于我们的评估数据库。通过用语言信息补充声学分类器,我们对USC-IEMOCAP语料库中的自发内容进行了价和激活描述符的分类。与先前的文献相比,我们分别使用来自Twitter和IEMOCAP的语言训练数据,证明了声学系统的性能提高了2%和6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Twitter: A New Online Source of Automatically Tagged Data for Conversational Speech Emotion Recognition
In the space of affect detection in multimedia, there is a strong demand for more tagged data in order to better understand human emotions, the way they are expressed, and approaches for detecting them automatically. Unfortunately, emotion datasets are typically small due to the manual process of annotating them with emotional labels. In response, we present for the first time the application of automatically tagged Twitter data to the problem of speech emotion recognition (SER). SER has been shown to benefit from the combination of acoustic and linguistic features, albeit when the linguistic training data is from the same database as the test data. Using the presence of emoticons for automatic tagging, we compile a corpus of over 800,000 tweets that is totally independent from our evaluation database. By supplementing an acoustic classifier with linguistic information, we classify the spontaneous content within the USC-IEMOCAP corpus on valence and activation descriptors. With comparison to prior literature, we demonstrate performance improvements for valence of 2% and 6% over an acoustic-only system, using linguistic training data from Twitter and IEMOCAP respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信