基于改进的ResNet50的人体姿态估计

Xiao Xiao, W. Wan
{"title":"基于改进的ResNet50的人体姿态估计","authors":"Xiao Xiao, W. Wan","doi":"10.1049/CP.2017.0126","DOIUrl":null,"url":null,"abstract":"This paper provides a method to predict 2D human pose in an image based on deep model ResNet-50. Human pose estimation is formulated as a regression problem towards body joints through top-down methods. First, we detect the position of humans in holistic image. Then, we take advantages of multi-stages cascade of ResNet-50 to reason about human body joints position. Our approach on challenging the FLIC datasets with large pose variation outperforms the state-of-the-art methods on these benchmarks.","PeriodicalId":424212,"journal":{"name":"4th International Conference on Smart and Sustainable City (ICSSC 2017)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Human pose estimation via improved ResNet50\",\"authors\":\"Xiao Xiao, W. Wan\",\"doi\":\"10.1049/CP.2017.0126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a method to predict 2D human pose in an image based on deep model ResNet-50. Human pose estimation is formulated as a regression problem towards body joints through top-down methods. First, we detect the position of humans in holistic image. Then, we take advantages of multi-stages cascade of ResNet-50 to reason about human body joints position. Our approach on challenging the FLIC datasets with large pose variation outperforms the state-of-the-art methods on these benchmarks.\",\"PeriodicalId\":424212,\"journal\":{\"name\":\"4th International Conference on Smart and Sustainable City (ICSSC 2017)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4th International Conference on Smart and Sustainable City (ICSSC 2017)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/CP.2017.0126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th International Conference on Smart and Sustainable City (ICSSC 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/CP.2017.0126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种基于深度模型ResNet-50的二维图像人体姿态预测方法。通过自顶向下的方法,将人体姿态估计表述为对人体关节的回归问题。首先,我们检测人在整体图像中的位置。然后,我们利用ResNet-50的多级级联对人体关节位置进行推理。我们在挑战具有大姿态变化的FLIC数据集方面的方法在这些基准测试中优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human pose estimation via improved ResNet50
This paper provides a method to predict 2D human pose in an image based on deep model ResNet-50. Human pose estimation is formulated as a regression problem towards body joints through top-down methods. First, we detect the position of humans in holistic image. Then, we take advantages of multi-stages cascade of ResNet-50 to reason about human body joints position. Our approach on challenging the FLIC datasets with large pose variation outperforms the state-of-the-art methods on these benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信