用不属于伯恩赛德的引理数彩色方块

D. Diniz, Caio Gomes
{"title":"用不属于伯恩赛德的引理数彩色方块","authors":"D. Diniz, Caio Gomes","doi":"10.21711/2319023x2022/pmo1012","DOIUrl":null,"url":null,"abstract":"Neste quadrados utilizando palitos de picol´e que tenham quadrados que podemos que palitos O processo de contagem dos quadrados coloridos envolve as rota¸c˜oes e reflex˜oes que preservam o quadrado, chamadas simetrias. No primeiro caso o conjunto de simetrias que consideramos consiste apenas das rota¸c˜oes que preservam o quadrado enquanto, no segundo caso, devemos considerar reflex˜oes. Em cada caso, com a composi¸c˜ao de fun¸c˜oes, o conjunto de simetrias que consideramos constitui uma estrutura alg´ebrica denominada grupo. No decorrer do artigo, apresentaremos o conceito de a¸c˜ao de grupo e um resultado relacionado que, entre v´arias denomina¸c˜oes, conhecido como o Lema que n˜ao ´e de Burnside. Abstract In this paper we count how many colored squares may be constructed with popsicle sticks painted, each one, with one of m colors. Two situations are considered, we paint one or both sides of each stick. We will see that in order to construct a square with sticks that have both sides painted, with the same color, we use more paint, however, the number of squares that may be constructed is smaller than using sticks with only one side painted. The method used to count the coloured squares involves rotations and reflections that preserve the square, called symmetries. In the first case the symmetries that we consider are the rotations that preserve the square while, in the second, case we also need to consider reflections. In each case, with the composition of functions, the set of symmetries considered forms an algebraic structure known as group. Throughout the paper we present the notion of group actions and a related result that, among many eponymous, became known also as The Lemma that is not Burnside’s.","PeriodicalId":274953,"journal":{"name":"Revista Professor de Matemática On line","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contando quadrados coloridos com o Lema que não e de Burnside\",\"authors\":\"D. Diniz, Caio Gomes\",\"doi\":\"10.21711/2319023x2022/pmo1012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neste quadrados utilizando palitos de picol´e que tenham quadrados que podemos que palitos O processo de contagem dos quadrados coloridos envolve as rota¸c˜oes e reflex˜oes que preservam o quadrado, chamadas simetrias. No primeiro caso o conjunto de simetrias que consideramos consiste apenas das rota¸c˜oes que preservam o quadrado enquanto, no segundo caso, devemos considerar reflex˜oes. Em cada caso, com a composi¸c˜ao de fun¸c˜oes, o conjunto de simetrias que consideramos constitui uma estrutura alg´ebrica denominada grupo. No decorrer do artigo, apresentaremos o conceito de a¸c˜ao de grupo e um resultado relacionado que, entre v´arias denomina¸c˜oes, conhecido como o Lema que n˜ao ´e de Burnside. Abstract In this paper we count how many colored squares may be constructed with popsicle sticks painted, each one, with one of m colors. Two situations are considered, we paint one or both sides of each stick. We will see that in order to construct a square with sticks that have both sides painted, with the same color, we use more paint, however, the number of squares that may be constructed is smaller than using sticks with only one side painted. The method used to count the coloured squares involves rotations and reflections that preserve the square, called symmetries. In the first case the symmetries that we consider are the rotations that preserve the square while, in the second, case we also need to consider reflections. In each case, with the composition of functions, the set of symmetries considered forms an algebraic structure known as group. Throughout the paper we present the notion of group actions and a related result that, among many eponymous, became known also as The Lemma that is not Burnside’s.\",\"PeriodicalId\":274953,\"journal\":{\"name\":\"Revista Professor de Matemática On line\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Professor de Matemática On line\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21711/2319023x2022/pmo1012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Professor de Matemática On line","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21711/2319023x2022/pmo1012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这个广场用牙签picol´广场,我们的牙签平方算的过程主要涉及到路线¸c˜海洋能和重新fl前˜海洋能数月的方块,所谓的对称性。在第一种情况下的对称集看成是唯一的线路¸c˜海洋能保留的广场,在第二种情况下,我们应该考虑重新fl前˜解释。在每一种情况下,随着函数的组合,我们考虑的对称性集构成了一个代数结构,称为群。在这篇文章中,我们将提出群的概念和一个相关的结果,在不同的名称中,称为非Burnside引理。在这篇论文中,我们可以计算出有多少彩色方块可以用冰棒画出来,每个方块都有一种颜色。两种情况考虑,我们画一个或双方的每一棍。我们将看到,在以构建广场与扔掉,双方画,同样的颜色,我们使用更多的油漆,然而,广场,may be constructed是小的数量比使用棍棒和只有一个边画。彩色的方法用于贝西广场包括rotations和重新flections,保留的广场,叫做反射。first案例的反思,我们认为是保存的rotations广场,第二,我们也需要考虑重新flections。在每个案例,设置的功能组成,反射形式视为一个代数结构称为组。在整个论文一家礼品公司行为的概念和相关的结果,在许多齐名,成为已知的有趣的不是伯恩赛德’s的引理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contando quadrados coloridos com o Lema que não e de Burnside
Neste quadrados utilizando palitos de picol´e que tenham quadrados que podemos que palitos O processo de contagem dos quadrados coloridos envolve as rota¸c˜oes e reflex˜oes que preservam o quadrado, chamadas simetrias. No primeiro caso o conjunto de simetrias que consideramos consiste apenas das rota¸c˜oes que preservam o quadrado enquanto, no segundo caso, devemos considerar reflex˜oes. Em cada caso, com a composi¸c˜ao de fun¸c˜oes, o conjunto de simetrias que consideramos constitui uma estrutura alg´ebrica denominada grupo. No decorrer do artigo, apresentaremos o conceito de a¸c˜ao de grupo e um resultado relacionado que, entre v´arias denomina¸c˜oes, conhecido como o Lema que n˜ao ´e de Burnside. Abstract In this paper we count how many colored squares may be constructed with popsicle sticks painted, each one, with one of m colors. Two situations are considered, we paint one or both sides of each stick. We will see that in order to construct a square with sticks that have both sides painted, with the same color, we use more paint, however, the number of squares that may be constructed is smaller than using sticks with only one side painted. The method used to count the coloured squares involves rotations and reflections that preserve the square, called symmetries. In the first case the symmetries that we consider are the rotations that preserve the square while, in the second, case we also need to consider reflections. In each case, with the composition of functions, the set of symmetries considered forms an algebraic structure known as group. Throughout the paper we present the notion of group actions and a related result that, among many eponymous, became known also as The Lemma that is not Burnside’s.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信