cd36介导的代谢适应引导肿瘤中的调节性t细胞

Haiping Wang, Ping-Chih Ho
{"title":"cd36介导的代谢适应引导肿瘤中的调节性t细胞","authors":"Haiping Wang, Ping-Chih Ho","doi":"10.1158/2326-6074.CRICIMTEATIAACR18-A223","DOIUrl":null,"url":null,"abstract":"Regulatory T-cells (Tregs) play an indispensable role in maintaining peripheral tolerance and preventing autoimmune disease. In addition to modulating tissue homeostasis, the suppressive properties of Tregs can also be harnessed by cancers to evade immunosurveillance. Therefore, depleting Tregs has been shown to unleash antitumor immunity and interrupt formation of an immunosuppressive tumor microenvironment (TME). However, systemic loss of Tregs due to Treg depletion also leads to severe autoimmunity. Therefore, the identification of novel approaches that specifically target intratumoral Tregs is direly needed for unleashing antitumor immunity and cancer immunotherapy. Here we show that intratumoral Tregs increase lipid uptake and content and elevated expression of CD36, a fatty acid translocase, as compared to Tregs in circulation and other normal tissues, in several cancer types. By using the transgenic mice model, we found that Treg-specific ablation of CD36 reduces accumulation of intratumoral Treg and suppresses tumor growth. Importantly, Treg-specific CD36 deficiency does not lead to autoimmunity in aged mice and CD36-deficient Tregs remain their suppressive activity on restraining CD4 T-cell-induced inflammatory bowl disease. Mechanistically, CD36 expression supports survival of intratumoral Tregs by fine-tuning their mitochondrial fitness via PPAR signaling. Thus, high expression of CD36 in intratumoral Tregs orchestrates Treg metabolic adaptation in tumors by intervening metabolic regulations, and further promotes tumor growth by suppressing the antitumor immune responses. Ultimately, anti-PD-1 blockade treatment elicits therapeutic benefits in mice with Treg-specific ablation of CD36. Altogether, our study suggests that CD36 might be a potential target for specifically waning down intratumoral Tregs and provide proof-of-concept evidence that targeting CD36 in tumors could unleash antitumor immunity and synergize with checkpoint blockade treatment. Citation Format: Haiping Wang, Ping-Chih Ho. CD36-mediated metabolic adaptation guides regulatory T-cells in tumors [abstract]. In: Proceedings of the Fourth CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; Sept 30-Oct 3, 2018; New York, NY. Philadelphia (PA): AACR; Cancer Immunol Res 2019;7(2 Suppl):Abstract nr A223.","PeriodicalId":170885,"journal":{"name":"Regulating T-cells and Their Response to Cancer","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abstract A223: CD36-mediated metabolic adaptation guides regulatory T-cells in tumors\",\"authors\":\"Haiping Wang, Ping-Chih Ho\",\"doi\":\"10.1158/2326-6074.CRICIMTEATIAACR18-A223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regulatory T-cells (Tregs) play an indispensable role in maintaining peripheral tolerance and preventing autoimmune disease. In addition to modulating tissue homeostasis, the suppressive properties of Tregs can also be harnessed by cancers to evade immunosurveillance. Therefore, depleting Tregs has been shown to unleash antitumor immunity and interrupt formation of an immunosuppressive tumor microenvironment (TME). However, systemic loss of Tregs due to Treg depletion also leads to severe autoimmunity. Therefore, the identification of novel approaches that specifically target intratumoral Tregs is direly needed for unleashing antitumor immunity and cancer immunotherapy. Here we show that intratumoral Tregs increase lipid uptake and content and elevated expression of CD36, a fatty acid translocase, as compared to Tregs in circulation and other normal tissues, in several cancer types. By using the transgenic mice model, we found that Treg-specific ablation of CD36 reduces accumulation of intratumoral Treg and suppresses tumor growth. Importantly, Treg-specific CD36 deficiency does not lead to autoimmunity in aged mice and CD36-deficient Tregs remain their suppressive activity on restraining CD4 T-cell-induced inflammatory bowl disease. Mechanistically, CD36 expression supports survival of intratumoral Tregs by fine-tuning their mitochondrial fitness via PPAR signaling. Thus, high expression of CD36 in intratumoral Tregs orchestrates Treg metabolic adaptation in tumors by intervening metabolic regulations, and further promotes tumor growth by suppressing the antitumor immune responses. Ultimately, anti-PD-1 blockade treatment elicits therapeutic benefits in mice with Treg-specific ablation of CD36. Altogether, our study suggests that CD36 might be a potential target for specifically waning down intratumoral Tregs and provide proof-of-concept evidence that targeting CD36 in tumors could unleash antitumor immunity and synergize with checkpoint blockade treatment. Citation Format: Haiping Wang, Ping-Chih Ho. CD36-mediated metabolic adaptation guides regulatory T-cells in tumors [abstract]. In: Proceedings of the Fourth CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; Sept 30-Oct 3, 2018; New York, NY. Philadelphia (PA): AACR; Cancer Immunol Res 2019;7(2 Suppl):Abstract nr A223.\",\"PeriodicalId\":170885,\"journal\":{\"name\":\"Regulating T-cells and Their Response to Cancer\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regulating T-cells and Their Response to Cancer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1158/2326-6074.CRICIMTEATIAACR18-A223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regulating T-cells and Their Response to Cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/2326-6074.CRICIMTEATIAACR18-A223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

调节性t细胞(Tregs)在维持外周耐受性和预防自身免疫性疾病中发挥着不可或缺的作用。除了调节组织稳态外,Tregs的抑制特性也可以被癌症利用来逃避免疫监视。因此,耗尽Tregs已被证明可以释放抗肿瘤免疫并中断免疫抑制性肿瘤微环境(TME)的形成。然而,Treg耗竭引起的全身Treg损失也会导致严重的自身免疫。因此,迫切需要确定特异性靶向肿瘤内Tregs的新方法来释放抗肿瘤免疫和癌症免疫治疗。本研究表明,在几种癌症类型中,与循环和其他正常组织中的Tregs相比,肿瘤内Tregs增加了脂质摄取和含量,并升高了CD36(一种脂肪酸转位酶)的表达。通过使用转基因小鼠模型,我们发现Treg特异性消融CD36可减少肿瘤内Treg的积累并抑制肿瘤生长。重要的是,treg特异性CD36缺乏症不会导致老年小鼠的自身免疫,并且CD36缺乏症treg在抑制CD4 t细胞诱导的炎性碗病方面仍然具有抑制活性。从机制上讲,CD36表达通过PPAR信号调节线粒体适应性来支持肿瘤内treg的存活。因此,肿瘤内Treg中CD36的高表达通过干预代谢调节,协调Treg在肿瘤中的代谢适应,并通过抑制抗肿瘤免疫反应进一步促进肿瘤生长。最终,抗pd -1阻断治疗可在treg特异性消融CD36的小鼠中获得治疗效果。总之,我们的研究表明,CD36可能是特异性降低肿瘤内Tregs的潜在靶点,并提供了概念验证证据,证明靶向肿瘤中的CD36可以释放抗肿瘤免疫并与检查点阻断治疗协同作用。引用格式:王海平,何平致。cd36介导的代谢适应引导肿瘤中的调节性t细胞[摘要]。第四届CRI-CIMT-EATI-AACR国际癌症免疫治疗会议:将科学转化为生存;2018年9月30日至10月3日;纽约,纽约。费城(PA): AACR;癌症免疫学杂志2019;7(2增刊):摘要nr A223。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abstract A223: CD36-mediated metabolic adaptation guides regulatory T-cells in tumors
Regulatory T-cells (Tregs) play an indispensable role in maintaining peripheral tolerance and preventing autoimmune disease. In addition to modulating tissue homeostasis, the suppressive properties of Tregs can also be harnessed by cancers to evade immunosurveillance. Therefore, depleting Tregs has been shown to unleash antitumor immunity and interrupt formation of an immunosuppressive tumor microenvironment (TME). However, systemic loss of Tregs due to Treg depletion also leads to severe autoimmunity. Therefore, the identification of novel approaches that specifically target intratumoral Tregs is direly needed for unleashing antitumor immunity and cancer immunotherapy. Here we show that intratumoral Tregs increase lipid uptake and content and elevated expression of CD36, a fatty acid translocase, as compared to Tregs in circulation and other normal tissues, in several cancer types. By using the transgenic mice model, we found that Treg-specific ablation of CD36 reduces accumulation of intratumoral Treg and suppresses tumor growth. Importantly, Treg-specific CD36 deficiency does not lead to autoimmunity in aged mice and CD36-deficient Tregs remain their suppressive activity on restraining CD4 T-cell-induced inflammatory bowl disease. Mechanistically, CD36 expression supports survival of intratumoral Tregs by fine-tuning their mitochondrial fitness via PPAR signaling. Thus, high expression of CD36 in intratumoral Tregs orchestrates Treg metabolic adaptation in tumors by intervening metabolic regulations, and further promotes tumor growth by suppressing the antitumor immune responses. Ultimately, anti-PD-1 blockade treatment elicits therapeutic benefits in mice with Treg-specific ablation of CD36. Altogether, our study suggests that CD36 might be a potential target for specifically waning down intratumoral Tregs and provide proof-of-concept evidence that targeting CD36 in tumors could unleash antitumor immunity and synergize with checkpoint blockade treatment. Citation Format: Haiping Wang, Ping-Chih Ho. CD36-mediated metabolic adaptation guides regulatory T-cells in tumors [abstract]. In: Proceedings of the Fourth CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; Sept 30-Oct 3, 2018; New York, NY. Philadelphia (PA): AACR; Cancer Immunol Res 2019;7(2 Suppl):Abstract nr A223.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信