多尺度超分割评价及其对高阶磁共振成像实景立体匹配的贡献

Yiran Xie, Rui Cao, Hanyang Tong, Sheng Liu, Nianjun Liu
{"title":"多尺度超分割评价及其对高阶磁共振成像实景立体匹配的贡献","authors":"Yiran Xie, Rui Cao, Hanyang Tong, Sheng Liu, Nianjun Liu","doi":"10.1109/DICTA.2010.50","DOIUrl":null,"url":null,"abstract":"The paper is to propose a framework to qualitatively and quantitatively evaluate five of state-of-the-art over-segment approaches. Moreover upon over-segments evaluation, an efficient approach is developed for dense stereo matching through robust higher-order MRFs and graph cut based optimization, which combines the conventional data and smoothness terms with the robust higher-order potential term. The experimental results on real-scene data sets clearly demonstrate that our over-segment-based higher-order stereo matching approach outperforms conventional stereo matching algorithms, as well as how over-segments improve the stereo matching process.","PeriodicalId":246460,"journal":{"name":"2010 International Conference on Digital Image Computing: Techniques and Applications","volume":"4032 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating Multi-scale Over-segment and Its Contribution to Real Scene Stereo Matching by High-Order MRFs\",\"authors\":\"Yiran Xie, Rui Cao, Hanyang Tong, Sheng Liu, Nianjun Liu\",\"doi\":\"10.1109/DICTA.2010.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper is to propose a framework to qualitatively and quantitatively evaluate five of state-of-the-art over-segment approaches. Moreover upon over-segments evaluation, an efficient approach is developed for dense stereo matching through robust higher-order MRFs and graph cut based optimization, which combines the conventional data and smoothness terms with the robust higher-order potential term. The experimental results on real-scene data sets clearly demonstrate that our over-segment-based higher-order stereo matching approach outperforms conventional stereo matching algorithms, as well as how over-segments improve the stereo matching process.\",\"PeriodicalId\":246460,\"journal\":{\"name\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"volume\":\"4032 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2010.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2010.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个框架来定性和定量地评价五种最先进的过分段方法。在过分段评估的基础上,将传统数据项、平滑项与鲁棒高阶势项相结合,通过鲁棒高阶mrf和基于图割的优化,提出了一种高效的密集立体匹配方法。在真实场景数据集上的实验结果清楚地表明,我们基于过分段的高阶立体匹配方法优于传统的立体匹配算法,以及过分段如何改善立体匹配过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating Multi-scale Over-segment and Its Contribution to Real Scene Stereo Matching by High-Order MRFs
The paper is to propose a framework to qualitatively and quantitatively evaluate five of state-of-the-art over-segment approaches. Moreover upon over-segments evaluation, an efficient approach is developed for dense stereo matching through robust higher-order MRFs and graph cut based optimization, which combines the conventional data and smoothness terms with the robust higher-order potential term. The experimental results on real-scene data sets clearly demonstrate that our over-segment-based higher-order stereo matching approach outperforms conventional stereo matching algorithms, as well as how over-segments improve the stereo matching process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信