一种新的自适应免疫遗传算法

Zheng Chang, G. Zhu
{"title":"一种新的自适应免疫遗传算法","authors":"Zheng Chang, G. Zhu","doi":"10.1109/KAM.2009.21","DOIUrl":null,"url":null,"abstract":"The theories of machine-learning are applied to the immune genetic algorithm. Chromosomes' immunity is enhanced and the average fitness of chromosomes is improved by using adaptive vaccine, so as to avoid the loss of the best solution, shrink the searching space and speed up the evolution, then the best solution can be get earlier. At the same time, the results are compared with each other through the optimization calculation of the modified immune genetic algorithm and the traditional genetic algorithm in solving classic 3x3 JSP problem.","PeriodicalId":192986,"journal":{"name":"2009 Second International Symposium on Knowledge Acquisition and Modeling","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Adaptive Immune Genetic Algorighm\",\"authors\":\"Zheng Chang, G. Zhu\",\"doi\":\"10.1109/KAM.2009.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The theories of machine-learning are applied to the immune genetic algorithm. Chromosomes' immunity is enhanced and the average fitness of chromosomes is improved by using adaptive vaccine, so as to avoid the loss of the best solution, shrink the searching space and speed up the evolution, then the best solution can be get earlier. At the same time, the results are compared with each other through the optimization calculation of the modified immune genetic algorithm and the traditional genetic algorithm in solving classic 3x3 JSP problem.\",\"PeriodicalId\":192986,\"journal\":{\"name\":\"2009 Second International Symposium on Knowledge Acquisition and Modeling\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Second International Symposium on Knowledge Acquisition and Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KAM.2009.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Symposium on Knowledge Acquisition and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KAM.2009.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将机器学习理论应用于免疫遗传算法。利用自适应疫苗增强了染色体的免疫力,提高了染色体的平均适应度,避免了最优解的丢失,缩小了搜索空间,加快了进化速度,从而可以更早地得到最优解。同时,将改进免疫遗传算法与传统遗传算法在求解经典3x3 JSP问题时的优化计算结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Adaptive Immune Genetic Algorighm
The theories of machine-learning are applied to the immune genetic algorithm. Chromosomes' immunity is enhanced and the average fitness of chromosomes is improved by using adaptive vaccine, so as to avoid the loss of the best solution, shrink the searching space and speed up the evolution, then the best solution can be get earlier. At the same time, the results are compared with each other through the optimization calculation of the modified immune genetic algorithm and the traditional genetic algorithm in solving classic 3x3 JSP problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信