显著脉冲噪声的弹性边缘检测方法

Dr. G. Krishna Mohan, P. M. Sai, N. H. Kumar, P. Raheema, K. S. Surendra
{"title":"显著脉冲噪声的弹性边缘检测方法","authors":"Dr. G. Krishna Mohan, P. M. Sai, N. H. Kumar, P. Raheema, K. S. Surendra","doi":"10.48047/ijfans/v11/i12/184","DOIUrl":null,"url":null,"abstract":"The present study introduces a novel technique for detecting edges in images by means of the Switching Adaptive Median and Fixed Weighted Mean (SAMFWM) filter, which proves to be highly effective in removing impulse noise compared to conventional denoising filters that are currently available, while preserving edge details, thus ensuring optimal edge detection. The performance of the proposed approach is assessed using a comprehensive analysis of different performance metrics, including Mean Square Error (MSE), Structural Similarity Index (SSIM), and Peak Signal-to-Noise Ratio (PSNR). In addition, the Sobel operator is used to detect the edges and Non-Maximum Suppression is used to track and thin the edges. These techniques are utilized to handle edge discontinuities and detect edges in the presence of high-intensity noise. Furthermore, the proposed approach outperforms other alternative techniques such as the Robert, Prewitt, and Canny edge detectors in effectively removing impulse noise, even at high levels.","PeriodicalId":290296,"journal":{"name":"International Journal of Food and Nutritional Sciences","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resilient EDGE Detection Method for Significant IMPULSE Noise\",\"authors\":\"Dr. G. Krishna Mohan, P. M. Sai, N. H. Kumar, P. Raheema, K. S. Surendra\",\"doi\":\"10.48047/ijfans/v11/i12/184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study introduces a novel technique for detecting edges in images by means of the Switching Adaptive Median and Fixed Weighted Mean (SAMFWM) filter, which proves to be highly effective in removing impulse noise compared to conventional denoising filters that are currently available, while preserving edge details, thus ensuring optimal edge detection. The performance of the proposed approach is assessed using a comprehensive analysis of different performance metrics, including Mean Square Error (MSE), Structural Similarity Index (SSIM), and Peak Signal-to-Noise Ratio (PSNR). In addition, the Sobel operator is used to detect the edges and Non-Maximum Suppression is used to track and thin the edges. These techniques are utilized to handle edge discontinuities and detect edges in the presence of high-intensity noise. Furthermore, the proposed approach outperforms other alternative techniques such as the Robert, Prewitt, and Canny edge detectors in effectively removing impulse noise, even at high levels.\",\"PeriodicalId\":290296,\"journal\":{\"name\":\"International Journal of Food and Nutritional Sciences\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Food and Nutritional Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48047/ijfans/v11/i12/184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Food and Nutritional Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48047/ijfans/v11/i12/184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种通过切换自适应中值和固定加权均值(SAMFWM)滤波器检测图像边缘的新技术,与目前可用的传统去噪滤波器相比,该技术在去除脉冲噪声方面非常有效,同时保留了边缘细节,从而确保了最佳边缘检测。通过综合分析不同的性能指标,包括均方误差(MSE)、结构相似指数(SSIM)和峰值信噪比(PSNR),对所提出方法的性能进行了评估。此外,采用Sobel算子检测边缘,采用非最大抑制法对边缘进行跟踪和细化。这些技术用于处理边缘不连续和检测存在高强度噪声的边缘。此外,该方法在有效去除脉冲噪声方面优于其他替代技术,如Robert、Prewitt和Canny边缘检测器,即使在高电平下也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resilient EDGE Detection Method for Significant IMPULSE Noise
The present study introduces a novel technique for detecting edges in images by means of the Switching Adaptive Median and Fixed Weighted Mean (SAMFWM) filter, which proves to be highly effective in removing impulse noise compared to conventional denoising filters that are currently available, while preserving edge details, thus ensuring optimal edge detection. The performance of the proposed approach is assessed using a comprehensive analysis of different performance metrics, including Mean Square Error (MSE), Structural Similarity Index (SSIM), and Peak Signal-to-Noise Ratio (PSNR). In addition, the Sobel operator is used to detect the edges and Non-Maximum Suppression is used to track and thin the edges. These techniques are utilized to handle edge discontinuities and detect edges in the presence of high-intensity noise. Furthermore, the proposed approach outperforms other alternative techniques such as the Robert, Prewitt, and Canny edge detectors in effectively removing impulse noise, even at high levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信