智能手机作为一种超低成本的医疗三录仪,通过ballocardiography进行实时心脏测量

Constantinos Gavriel, K. Parker, A. Faisal
{"title":"智能手机作为一种超低成本的医疗三录仪,通过ballocardiography进行实时心脏测量","authors":"Constantinos Gavriel, K. Parker, A. Faisal","doi":"10.1109/BSN.2015.7299425","DOIUrl":null,"url":null,"abstract":"In this preliminary study, we investigate the potential use of smartphones as portable heart-monitoring devices that can capture and analyse heart activity in real time. We have developed a smartphone application called “Medical Tricorder” that can exploit smartphone;s inertial sensors and when placed on a subject;s chest, it can efficiently capture the motion patterns caused by the mechanical activity of the heart. Using the measured ballistocardiograph signal (BCG), the application can efficiently extract the heart rate in real time while matching the performance of clinical-grade electrocardiographs (ECG). Although the BCG signal can provide much richer information regarding the mechanical aspects of the human heart, we have developed a method of mapping the chest BCG signal into an ECG signal, which can be made directly available to clinicians for diagnostics. Comparing the estimated ECG signal to empirical data from cardiovascular diseases, may allow detection of heart abnormalities at a very early stage without any medical staff involvement. Our method opens up the potential of turning smartphones into portable healthcare systems which can provide patients and general public an easy access to continuous healthcare monitoring. Additionally, given that our solution is mainly software based, it can be deployed on smartphones around the world with minimal costs.","PeriodicalId":447934,"journal":{"name":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Smartphone as an ultra-low cost medical tricorder for real-time cardiological measurements via ballistocardiography\",\"authors\":\"Constantinos Gavriel, K. Parker, A. Faisal\",\"doi\":\"10.1109/BSN.2015.7299425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this preliminary study, we investigate the potential use of smartphones as portable heart-monitoring devices that can capture and analyse heart activity in real time. We have developed a smartphone application called “Medical Tricorder” that can exploit smartphone;s inertial sensors and when placed on a subject;s chest, it can efficiently capture the motion patterns caused by the mechanical activity of the heart. Using the measured ballistocardiograph signal (BCG), the application can efficiently extract the heart rate in real time while matching the performance of clinical-grade electrocardiographs (ECG). Although the BCG signal can provide much richer information regarding the mechanical aspects of the human heart, we have developed a method of mapping the chest BCG signal into an ECG signal, which can be made directly available to clinicians for diagnostics. Comparing the estimated ECG signal to empirical data from cardiovascular diseases, may allow detection of heart abnormalities at a very early stage without any medical staff involvement. Our method opens up the potential of turning smartphones into portable healthcare systems which can provide patients and general public an easy access to continuous healthcare monitoring. Additionally, given that our solution is mainly software based, it can be deployed on smartphones around the world with minimal costs.\",\"PeriodicalId\":447934,\"journal\":{\"name\":\"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2015.7299425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2015.7299425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在这项初步研究中,我们调查了智能手机作为便携式心脏监测设备的潜在用途,可以实时捕获和分析心脏活动。我们已经开发了一款名为“医用三录仪”的智能手机应用程序,它可以利用智能手机的惯性传感器,当它被放置在受试者的胸部时,它可以有效地捕捉到由心脏机械活动引起的运动模式。该应用程序利用测量到的心电图信号(BCG),可以有效地实时提取心率,同时达到临床级心电图(ECG)的性能。虽然卡介子信号可以提供关于人类心脏机械方面的更丰富的信息,但我们已经开发了一种将胸部卡介子信号映射为心电图信号的方法,可以直接用于临床医生的诊断。将估计的心电信号与心血管疾病的经验数据进行比较,可以在没有医务人员参与的情况下,在非常早期的阶段检测到心脏异常。我们的方法开辟了将智能手机转变为便携式医疗系统的潜力,可以为患者和公众提供方便的连续医疗监测。此外,鉴于我们的解决方案主要是基于软件的,它可以以最低的成本部署在世界各地的智能手机上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smartphone as an ultra-low cost medical tricorder for real-time cardiological measurements via ballistocardiography
In this preliminary study, we investigate the potential use of smartphones as portable heart-monitoring devices that can capture and analyse heart activity in real time. We have developed a smartphone application called “Medical Tricorder” that can exploit smartphone;s inertial sensors and when placed on a subject;s chest, it can efficiently capture the motion patterns caused by the mechanical activity of the heart. Using the measured ballistocardiograph signal (BCG), the application can efficiently extract the heart rate in real time while matching the performance of clinical-grade electrocardiographs (ECG). Although the BCG signal can provide much richer information regarding the mechanical aspects of the human heart, we have developed a method of mapping the chest BCG signal into an ECG signal, which can be made directly available to clinicians for diagnostics. Comparing the estimated ECG signal to empirical data from cardiovascular diseases, may allow detection of heart abnormalities at a very early stage without any medical staff involvement. Our method opens up the potential of turning smartphones into portable healthcare systems which can provide patients and general public an easy access to continuous healthcare monitoring. Additionally, given that our solution is mainly software based, it can be deployed on smartphones around the world with minimal costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信