水下视频中目标检测算法的定量性能分析

MAED '12 Pub Date : 2012-11-02 DOI:10.1145/2390832.2390847
I. Kavasidis, S. Palazzo
{"title":"水下视频中目标检测算法的定量性能分析","authors":"I. Kavasidis, S. Palazzo","doi":"10.1145/2390832.2390847","DOIUrl":null,"url":null,"abstract":"Object detection in underwater unconstrained environments is useful in domains like marine biology and geology, where the scientists need to study fish populations, underwater geological events etc. However, in literature, very little can be found regarding fish detection in unconstrained underwater videos. Nevertheless, the unconstrained underwater video domain constitutes a perfect soil for bringing state-of-the-art object detection algorithms to their limits because of the nature of the scenes, which often present with a number of intrinsic difficulties (e.g. multi-modal backgrounds, complex textures and color patterns, ever-changing illumination etc..).\n In this paper, we evaluated the performance of six state-of-the-art object detection algorithms in the task of fish detection in unconstrained, underwater video footage, discussing the properties of each of them and giving a detailed report of the achieved performance.","PeriodicalId":173175,"journal":{"name":"MAED '12","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Quantitative performance analysis of object detection algorithms on underwater video footage\",\"authors\":\"I. Kavasidis, S. Palazzo\",\"doi\":\"10.1145/2390832.2390847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object detection in underwater unconstrained environments is useful in domains like marine biology and geology, where the scientists need to study fish populations, underwater geological events etc. However, in literature, very little can be found regarding fish detection in unconstrained underwater videos. Nevertheless, the unconstrained underwater video domain constitutes a perfect soil for bringing state-of-the-art object detection algorithms to their limits because of the nature of the scenes, which often present with a number of intrinsic difficulties (e.g. multi-modal backgrounds, complex textures and color patterns, ever-changing illumination etc..).\\n In this paper, we evaluated the performance of six state-of-the-art object detection algorithms in the task of fish detection in unconstrained, underwater video footage, discussing the properties of each of them and giving a detailed report of the achieved performance.\",\"PeriodicalId\":173175,\"journal\":{\"name\":\"MAED '12\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MAED '12\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2390832.2390847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MAED '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2390832.2390847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

水下无约束环境中的目标检测在海洋生物学和地质学等领域非常有用,科学家需要研究鱼类种群,水下地质事件等。然而,在文献中,关于无约束水下视频中鱼类检测的研究很少。然而,由于场景的性质,不受约束的水下视频域构成了将最先进的目标检测算法发挥到极致的完美土壤,这些场景通常存在许多固有的困难(例如多模态背景,复杂的纹理和颜色图案,不断变化的照明等)。在本文中,我们评估了六种最先进的目标检测算法在无约束水下视频片段中鱼类检测任务中的性能,讨论了每种算法的特性,并给出了实现性能的详细报告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative performance analysis of object detection algorithms on underwater video footage
Object detection in underwater unconstrained environments is useful in domains like marine biology and geology, where the scientists need to study fish populations, underwater geological events etc. However, in literature, very little can be found regarding fish detection in unconstrained underwater videos. Nevertheless, the unconstrained underwater video domain constitutes a perfect soil for bringing state-of-the-art object detection algorithms to their limits because of the nature of the scenes, which often present with a number of intrinsic difficulties (e.g. multi-modal backgrounds, complex textures and color patterns, ever-changing illumination etc..). In this paper, we evaluated the performance of six state-of-the-art object detection algorithms in the task of fish detection in unconstrained, underwater video footage, discussing the properties of each of them and giving a detailed report of the achieved performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信