基于边缘检测技术的医学图像分割

N. Salman, Bnar M Ghafour, Gullanar M. Hadi
{"title":"基于边缘检测技术的医学图像分割","authors":"N. Salman, Bnar M Ghafour, Gullanar M. Hadi","doi":"10.14738/AIVP.32.1006","DOIUrl":null,"url":null,"abstract":"In  this  article  a  new  combination  of  image  segmentation  techniques  including  K-means clustering,  watershed  transform,  region  merging  and  growing  algorithm  was  proposed  to segment computed tomography(CT) and magnetic resonance(MR) medical images. The first stage in the proposed system is \"preprocessing\" for required  image enhancement, cropped, and convert the images into .mat or png ...etc image file formats then the image will be segmented using combination    methods (clustering , region growing, and watershed, thresholding).  Some  initial  over-segmentation  appears  due  to  the  high  sensitivity  of  the watershed algorithm to  the gradient image intensity variations. Here,  K- means  and region growing with correct thresholding value are used to overcome that over segmentations. in our system the number of pixels of segmented area is calculated which is very important for medical image analysis for diseases or medicine effects on affected area of human body. also displaying the edge map. The results show that using clustering method output to region growing as input image, gives accurate and very good results compare with watershed technique which depends on gradient of input image, the mean and the threshold values which are chosen manually. Also the results show that the manual selection of the threshold value for the watershed is not as good as automatically selecting, where data misses may be happen.","PeriodicalId":445404,"journal":{"name":"Journal of Advanced Computer Science and Technology","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Medical Image Segmentation Based on Edge Detection Techniques\",\"authors\":\"N. Salman, Bnar M Ghafour, Gullanar M. Hadi\",\"doi\":\"10.14738/AIVP.32.1006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In  this  article  a  new  combination  of  image  segmentation  techniques  including  K-means clustering,  watershed  transform,  region  merging  and  growing  algorithm  was  proposed  to segment computed tomography(CT) and magnetic resonance(MR) medical images. The first stage in the proposed system is \\\"preprocessing\\\" for required  image enhancement, cropped, and convert the images into .mat or png ...etc image file formats then the image will be segmented using combination    methods (clustering , region growing, and watershed, thresholding).  Some  initial  over-segmentation  appears  due  to  the  high  sensitivity  of  the watershed algorithm to  the gradient image intensity variations. Here,  K- means  and region growing with correct thresholding value are used to overcome that over segmentations. in our system the number of pixels of segmented area is calculated which is very important for medical image analysis for diseases or medicine effects on affected area of human body. also displaying the edge map. The results show that using clustering method output to region growing as input image, gives accurate and very good results compare with watershed technique which depends on gradient of input image, the mean and the threshold values which are chosen manually. Also the results show that the manual selection of the threshold value for the watershed is not as good as automatically selecting, where data misses may be happen.\",\"PeriodicalId\":445404,\"journal\":{\"name\":\"Journal of Advanced Computer Science and Technology\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Computer Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14738/AIVP.32.1006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computer Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14738/AIVP.32.1006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文提出了一种结合k均值聚类、分水岭变换、区域合并和生长算法等图像分割技术对CT和磁共振医学图像进行分割的新方法。该系统的第一阶段是“预处理”所需的图像增强,裁剪,并将图像转换为。mat或png…等图像文件格式,然后使用组合方法(聚类,区域增长,分水岭,阈值)分割图像。分水岭算法对梯度图像强度变化的高灵敏度导致了初始过分割。在这里,使用K均值和具有正确阈值的区域增长来克服过度分割。在我们的系统中,分割区域像素数的计算在医学图像分析中对疾病或药物对人体的影响非常重要。同时显示边缘映射。结果表明,采用聚类方法将区域生长作为输入图像输出,与依靠输入图像的梯度、均值和阈值手动选择的分水岭方法相比,得到了更准确、更好的结果。结果表明,人工选择的分水岭阈值不如自动选择的分水岭阈值,可能会出现数据丢失的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Medical Image Segmentation Based on Edge Detection Techniques
In  this  article  a  new  combination  of  image  segmentation  techniques  including  K-means clustering,  watershed  transform,  region  merging  and  growing  algorithm  was  proposed  to segment computed tomography(CT) and magnetic resonance(MR) medical images. The first stage in the proposed system is "preprocessing" for required  image enhancement, cropped, and convert the images into .mat or png ...etc image file formats then the image will be segmented using combination    methods (clustering , region growing, and watershed, thresholding).  Some  initial  over-segmentation  appears  due  to  the  high  sensitivity  of  the watershed algorithm to  the gradient image intensity variations. Here,  K- means  and region growing with correct thresholding value are used to overcome that over segmentations. in our system the number of pixels of segmented area is calculated which is very important for medical image analysis for diseases or medicine effects on affected area of human body. also displaying the edge map. The results show that using clustering method output to region growing as input image, gives accurate and very good results compare with watershed technique which depends on gradient of input image, the mean and the threshold values which are chosen manually. Also the results show that the manual selection of the threshold value for the watershed is not as good as automatically selecting, where data misses may be happen.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信